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Carta de Bienvenida

La Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones, A.C. (SMCCA) y el Comité Edi-
torial les dan la més cordial bienvenida a la edicion 2025 del Boletin electronico anual de la SMCCA. Esta
publicacién tiene como objetivo mantener informada a nuestra comunidad sobre las actividades de la Socie-
dad y de sus asociados, asi como difundir trabajos y reflexiones relevantes en el ambito de las Matematicas
Aplicadas y el Computo Cientifico.

La presente edicion se publica en un ano significativo para nuestra Sociedad. A lo largo de sus paginas
se refleja no soélo el dinamismo académico de la SMCCA, sino también el reconocimiento y la gratitud hacia
quienes han contribuido de manera decisiva a su construccién y consolidacion. En este contexto, el Boletin
incluye una nota poéstuma en memoria del Dr. Humberto Madrid de la Vega, socio fundador, maestro y refe-
rente para generaciones de estudiantes y colegas, cuya visién y compromiso siguen siendo parte fundamental
del espiritu de nuestra comunidad.

Asimismo, el ano 2025 estuvo marcado por acontecimientos de especial relevancia para la vida institucional
de la SMCCA. En esta edicion del Boletin se da cuenta de la conmemoracion académica en honor al Prof.
Jestus Lopez Estrada, figura fundamental en el desarrollo de la computacion cientifica y el anélisis numérico
en México. De igual forma, este afio la SMCCA fue aceptada como Full Member del International Council
for Industrial and Applied Mathematics (ICIAM), convirtiéndose en la tnica sociedad mexicana con esta
distincion, lo que representa un reconocimiento internacional al trabajo sostenido de nuestra comunidad y
fortalece la proyeccion global de nuestras actividades académicas.

El Boletin 2025 incluye noticias, eventos, articulos de divulgacion, docencia e investigacion de alto nivel,
asi como contribuciones que reflejan la diversidad de enfoques y aplicaciones de nuestra adrea. Como novedad,
se incorpora la seccion Panorama, concebida como un espacio para ofrecer una vision general y reflexiva sobre
temas actuales, tendencias y retos en las Mateméticas Aplicadas y el Computo Cientifico, con el propésito
de contextualizar los trabajos presentados y enriquecer la lectura del Boletin.

En esta edicién se presentan, entre otros contenidos, una semblanza de la ediciéon més reciente de la
Escuela Nacional de Optimizacion y Analisis Numérico, articulos de investigacion seleccionados por invitacion
y por convocatoria, asi como los trabajos distinguidos en la edicién correspondiente del Premio Mixbaal, que
reconoce las mejores tesis de licenciatura en Matemaéticas Aplicadas y areas afines. Estos aportes reflejan el
compromiso permanente de la SMCCA con la formaciéon académica, la excelencia cientifica y el impulso a las
nuevas generaciones.

La SMCCA agradece el interés de sus lectores y los invita a continuar participando activamente en
las actividades de la Sociedad, ya sea como lectores habituales, autores o miembros activos. La informa-
cion sobre el registro de membresias puede consultarse en el Médulo de Registro disponible en la pégina
WWW. SICCa.org. mX.

Jonathan Montalvo Urquizo
Presidente
Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones, A.C.
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Panorama SMCCA

In Memoriam: Prof. Humberto Madrid de la Vega (1946—2025)

Con profunda tristeza y, al mismo tiempo, con gratitud, la Sociedad Mexicana de Computacion Cientifica
y sus Aplicaciones recuerda la vida y obra del Dr. Humberto Madrid de la Vega, colega entranable, profesor
y uno de los socios fundadores de nuestra asociacion. Su partida representa una pérdida irreparable para la
comunidad matematica y de computo cientifico en México, pero también una oportunidad para reconocer y
celebrar un legado académico y humano excepcional.

Formado en la Facultad de Ciencias de la Universidad Nacional Auténoma de México, el Dr. Madrid realizé
estudios de doctorado en matematicas en la Universidad de Nuevo México y se especializo en temas de anélisis
numérico. A su regreso al pais, desempend un papel fundamental en la construccion y el fortalecimiento
de instituciones que hoy son referentes nacionales, en las que siempre impulsé la formacién de recursos
humanos en matemaéticas aplicadas y computo cientifico. Fue fundador de la hoy Facultad de Ciencias Fisico
Matemaéticas y también del Centro de Investigacion en Matematicas Aplicadas (CIMA) de la Universidad
Autonoma de Coahuila, fundador de la organizaciéon de la Escuela Nacional de Optimizacion y Analisis
Numérico (ENOAN) y de nuestra actual Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones
(SMCCA).

Convencido de la importancia de la colaboraciéon académica y del desarrollo de las mateméticas aplicadas
fuera de los grandes centros tradicionales, impulsé activamente las Escuelas de Matematicas fuera de la
capital mexicana en el marco de los Congresos Nacionales de la Sociedad Matemaética Mexicana. Ese esfuerzo
sostenido y su entusiasmo incansable derivaron, anos més tarde, en la creacion de una Red de Escuelas que fue
uno de los origenes de la hoy llamada Red Mexicana de Instituciones de Mateméticas (ReMIM), formalizada
en 2021, la cual contintia promoviendo la comunicacién y la cooperaciéon interinstitucional en todo el pais,
donde el Prof. Madrid de la Vega particip6 activamente hasta este ano.

Mas alla de sus aportaciones cientificas e institucionales, Humberto Madrid fue, para muchos de nosotros,
un maestro cercano y generoso. Numerosos socios de la SMCCA tuvimos el privilegio de ser sus estudiantes,
de aprender de su rigor académico, de su claridad conceptual y de su profunda vocacién por la ensenanza.
Su influencia se refleja no solo en publicaciones y proyectos, sino también en generaciones de profesionistas
formados bajo su guia y ejemplo.

Toda la comunidad matematica del pais, de la cual la SMCCA forma parte, lamenta profundamente su
partida. Agradecemos el impacto indeleble de su trabajo y celebramos el ejemplo de dedicacién que nos
deja. Extendemos nuestras sinceras condolencias a su familia, amistades, colegas y estudiantes, y honramos
su memoria, reafirmando nuestro compromiso con los altos valores académicos y humanos que él ayudo6 a
construir.

iDescansa en paz, querido Humberto!

La ENOAN 2025: contexto y alcance de nuestro evento emblematico

La Escuela Nacional de Optimizacion y Analisis Numérico (ENOAN) es uno de los eventos académicos
maés representativos de la comunidad de Matematicas Aplicadas y Computo Cientifico en México. Desde su
creacion a principios de la década de 1990, la ENOAN ha mantenido como objetivo central la formacion
avanzada de estudiantes, la actualizacién de investigadores y la promocién del intercambio académico en
areas como la optimizacion, el analisis numérico, la modelacién matematica y disciplinas afines. A lo largo
de més de tres décadas, este encuentro se ha consolidado como un espacio de referencia nacional, estrecha-
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mente vinculado al desarrollo y al fortalecimiento de la Sociedad Mexicana de Computacion Cientifica y sus
Aplicaciones (SMCCA).

La edicion ENOAN 2025 se llevo a cabo en la ciudad de Guanajuato, Guanajuato, del 23 al 27
de junio de 2025, en modalidad hibrida, bajo la organizacién conjunta de la SMCCA y el Centro de
Investigacion en Matematicas (CIMAT). El programa académico de esta edicion XXXIII incluyo
cursos especializados, conferencias plenarias, sesiones de trabajos contribuidos y actividades orientadas a la
interaccion entre estudiantes, académicos e investigadores provenientes de diversas instituciones nacionales e
internacionales. Esta estructura permitié atender tanto a participantes en etapas tempranas de su formacion
como a especialistas consolidados, fomentando el didlogo intergeneracional y la colaboracion interdisciplinaria.

La ENOAN 2025 también destaco por su impacto en términos de participacion, diversidad institucional
y amplitud temaética. Con el propoésito de documentar y analizar de manera objetiva el alcance de este
evento embleméatico, en esta seccién se presenta una vision general de los principales aspectos académicos y
organizativos asociados a su realizaciéon. De manera complementaria, el Boletin incluye una seccién posterior
dedicada exclusivamente a un analisis detallado de los resultados cuantificables de la ENOAN 2025, donde se
ofrece un amplio conjunto de estadisticas sobre asistencia, actividades académicas, contribuciones cientificas
y otros indicadores relevantes que permiten dimensionar con mayor precisiéon el impacto y la evolucién de
este encuentro académico.

Mas alla de los indicadores cuantitativos, la ENOAN 2025 sirvié nuevamente como un nodo fundamental
para fomentar colaboraciones, fortalecer redes académicas, inspirar vocaciones cientificas y presentar solu-
ciones, desde la matematica aplicada y el computo cientifico, a problemas de interés nacional. La realizacion
exitosa de esta edicion fue posible gracias al trabajo comprometido del Comité Organizador Nacional y Local,
asi como al apoyo institucional del CIMAT. La SMCCA expresa un agradecimiento profundo a la Direccion
General del CIMAT, a cargo del Dr. Rafael Herrera Guzman, y a los investigadores responsables de la orga-
nizacion local: Dr. Miguel Angel Moreles Vazquez y Dr. Salvador Botello Rionda, cuya dedicacion, liderazgo
y compromiso fueron determinantes para el desarrollo académico y logistico del evento.

Reconociendo a los jévenes: entrega del Premio Mixbaal 2025

Como cada ano, la SMCCA realiz6 la convocatoria para el Premio Mixbaal a la mejor tesis de nivel de
licenciatura en matematicas aplicadas del pais. Desde hace méas de dos décadas, este premio reconoce la
labor cientifica de quienes son el origen de nuestros objetivos y metas como sociedad cientifica: los jovenes
estudiantes.

Este ano, la convocatoria atrajo a diversos trabajos sometidos desde las instituciones académicas Instituto
Tecnologico Auténomo de México, Universidad Autéonoma de la Ciudad de México, Universidad Auténoma de
las Américas Puebla, Universidad Auténoma de Tlaxcala, Universidad Autonoma de Zacatecas, Universidad
Michoacana de San Nicolas de Hidalgo, Universidad Nacional Auténoma de México y Universidad Tecnologica
de la Mixteca. Todas las personas que sometieron sus trabajos de titulacién de nivel profesional en temas de
matematicas aplicadas fueron evaluadas de manera estricta por investigadores de primer nivel y basado en
estas evaluaciones el Comité consideré que este ano se entregaran los siguientes dos premios:

= Premio Mixbaal 2025 a la mejor tesis de licenciatura en matematicas aplicadas para la Lic. Ana Teresa
Calder6on Juarez con el trabajo ‘Coloracion en grdficas de mapas en la Tierra y mapas en la luna’ del
Instituto Tecnologico Auténomo de México (ITAM).

= Mencién honorifica del Premio Mixbaal 2025 para el Lic. Rodrigo Gonzaga Sierra con el trabajo ‘Cuan-
tificacion de incertidumbre sobre pardametros en modelos no lineales’ de la Universidad Tecnologica de
la Mixteca.

Cabe destacar que se reestructuré la organizaciéon del premio, iniciando con la formalizacién de un Comité
del Premio Mixbaal, que a partir de este afio estara conformado por 3 reconocidos profesores e investigadores
miembros de nuestra asociacion, que se mantendran como miembros de este Comité por una duracién maxima
de tres anos. Las funciones de este Comité consisten en llevar el proceso completo de la entrega del Premio
Mixbaal, desde la publicacién de la convocatoria y la recepcion de trabajos, hasta la estructuracion del
proceso de revision y la decision final e inapelable sobre el otorgamiento anual del Premio.

Para esta edicion, los miembros del Comité y su permanencia son: Dra. Maria del Pilar Alonso Reyes
(Coordinadora, de 2025 a 2027), Dr. Miguel Angel Uh Zapata (de 2025 a 2026), Dr. Francisco Dominguez
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Mota (2025). A partir de 2026, cada ano habra un nuevo miembro del Comité del Premio Mixbaal y todos
los nuevos integrantes serédn invitados a participar durante tres anos.

Agradecemos por este medio al comité por su arduo trabajo, aunado a un profundo agradecimiento a
todos los colegas que anualmente apoyan a la SMCCA con la revision de los trabajos sometidos, en una
valiosa funcién que nos ayuda a realizar una excelente selecciéon de los mejores trabajos de cada ano.

Voto de confianza: la SMICCA obtiene financiamiento estratégico

La SMCCA se complace en anunciar la aprobaciéon del proyecto ‘Divulgacion de actividades de
matematica aplicada, computacion cientifica e ingenieria para el impulso de las vocaciones de
investigacion en el pais’ por parte de la Secretaria de Ciencia, Humanidades, Tecnologia e Innovacién
(SECIHTI). Este respaldo institucional obtenido en la convocatoria ACADEMIAS 2025 se traduce en un
apoyo de $1,620,740.00 M.N. para ser ejercido entre el segundo semestre de 2025 y los afos 2026 y 2027.
Este financiamiento es fundamental para dar continuidad y fortalecer las actividades centrales de nuestra
sociedad.

El proyecto, que cuenta con el Dr. Miguel Angel Uh Zapata, el Dr. Jonathan Montalvo Urquizo y la Dra.
Rina Betzabeth Ojeda Castaneda como responsables ante la SECIHTI, permitira:

= Fortalecer los encuentros académicos insignia: Dar continuidad a la Escuela Nacional de Optimizacion y
Analisis Numeérico (ENOAN) en sus ediciones de 2026 y 2027, e innovar con actividades de divulgacion
cientifica en forma de conferencias nacionales durante los primeros meses de 2026.

= Ampliar el impacto de la divulgaciéon: Producir y distribuir materiales accesibles, como infografias
interactivas y capsulas audiovisuales, que acerquen las matematicas aplicadas y el computo cientifico a
estudiantes y al ptiblico en general.

= Consolidar la publicacién cientifica: Garantizar la edicion y publicacion de los Boletines de la SMCCA
correspondientes a los anos 2025, 2026 y 2027, manteniendo este espacio de difusion arbitrada y de
acceso abierto.

= Sembrar para el futuro: Crear y mantener un catalogo nacional de temas de tesis y fomentar redes de
mentoria, con el objetivo claro de atraer y guiar a la proxima generaciéon de investigadores.

= Promover la inclusién y la equidad: Todas las actividades se disenaran con un enfoque transversal de
género e inclusion, priorizando la participaciéon de mujeres y jévenes para reducir las brechas historicas
en las dreas STEM.

Este éxito se basa en los resultados del proyecto multianual anterior (2021-2024), donde la SMCCA
demostro capacidad de ejecucion e impacto. Agradecemos a la SECIHTI por confiar en nuestro trabajo
y renovamos nuestro compromiso con la comunidad académica nacional para utilizar estos recursos con
transparencia y alto impacto, en beneficio de las vocaciones cientificas del pais.

55 anos de legado: homenaje al Prof. Jests Lopez Estrada

El dia 3 de diciembre de 2025, en el Auditorio ‘Yelizcalli’ de la Facultad de Ciencias de la UNAM, la comu-
nidad académica se congregd para celebrar una trayectoria excepcional. En un acto lleno de reconocimiento
y afecto, la Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones (SMCCA) rindi6 homenaje
al Prof. Jests Lopez Estrada por sus 55 anos de ininterrumpida y fructifera labor académica. Esta sesion
especial de la SMCCA fue organizada en colaboracion con los colegas Pablo Barrera Sanchez, Guilmer Gon-
zalez Flores y Humberto Madrid de la Vega!, y reuni6 a compaiieros, colaboradores y discipulos de diversas
generaciones e instituciones.

El evento fue inaugurado por el Dr. Luis Felipe Jiménez Garcia, director de la Facultad de Ciencias de
la UNAM, y estuvo compuesto por un sélido programa de conferencias que reflejaron la amplitud e impacto
del trabajo del Prof. Lopez Estrada en temas de modelacién matematica en medicina y de analisis numérico:
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» Dr. Benito Chen Charpentier (University of Texas at Arlington, USA) inaugur6 las ponencias
con la conferencia “Modelos matemdticos sencillos de epidemias con tiempo de infeccion”, analizando
métodos para incorporar tiempos de incubacién en modelos epidemiolégicos, un area cercana a la linea
de investigacion del homenajeado.

» Dr. Justino Alavez Ramirez (Universidad Juarez Autonoma de Tabasco) presentd “Estimacion de
pardmetros de modelos basados en EDO de dindmica viral”, abordando técnicas para resolver problemas
inversos, tema central en la investigacion del Prof. Lopez Estrada.

» Dr. Faustino Sanchez Garduio (Facultad de Ciencias, UNAM) exploré la “Dindmica de dos sistemas
de EDO en tres dimensiones”, vinculando modelos de invasion cancerosa con la teoria de ondas viajeras.
Ademas, mostré notas historicas de gran interés personal para el Prof. Lopez Estrada, como notas
rigurosas tomadas de sus cursos impartidos cuando el expositor era su estudiante hace varias décadas.

= Dr. Gilberto Calvillo Vives (IMATE - UNAM) compartié “Una aventura inconclusa en el dmbito
del Algebra Lineal Numérica”, rememorando proyectos conjuntos iniciados hace méas de 40 anos en el
IPN sobre codigos de Programaciéon Lineal.

= Dr. Pablo Barrera Sanchez (Facultad de Ciencias, UNAM) cerro el ciclo de conferencias con “Desa-
rrollo de la Matemdtica Aplicada y Numérica en la Facultad de Ciencias”, reflexionando sobre los hitos
que llevaron a la consolidacion de este campo, donde el homenajeado ha sido una figura clave.

También se proyectd un video realizado por colegas de Cuba. En este pais, siempre se hace mencién de
la influencia formativa y humana en la isla por mas de cuatro décadas que tuvo el Prof. Lopez Estrada.
Investigadores como la Dra. Valia Guerra Ones (Universidad de La Laguna, Espana), la Dra. Victoria Her-
nandez Mederos (CIMAF, Cuba) e Isidro Abello Ugalde (Universidad de La Habana, Cuba) son algunos de
los colegas internacionales que dan fe de este legado de varias décadas de colaboraciéon internacional.

El homenaje fue mas alla de lo académico. Durante la sesién se proyectaron y compartieron remem-
branzas escritas por una constelacion de colegas y amigos que han acompanado al profesor a lo largo de
los anos, entre ellos, los profesores: Benito Chen Charpentier, Zeferino Parada, Jonathan Montalvo
Urquizo, Irma Garcia Calvillo, Francisco Dominguez Mota, Lourdes Velasco Arregui y Pedro
Miramontes.

Este acto no solo celebré a un pionero de la computacion cientifica y de la modelaciéon matematica en
medicina en México, un formador excepcional de decenas de profesionales, un indiscutible organizador
de la ENOAN en muchas de sus ediciones desde hace varias décadas, y un miembro fundador de la
SMCCA. Celebro, sobre todo, la integridad, la generosidad y la pasién por el conocimiento de un hombre
cuya vida y obra han dejado una huella indeleble en la comunidad matemética mexicana y méas alld. Su
legado, de 55 anos de servicio en la UNAM y de produccion académica de calidad, es una piedra angular
sobre la cual se puede construir el futuro de las matematicas aplicadas en nuestro pais.

iMuchas felicidades, Jesus! Te deseamos lo mejor en todos los anos venideros.

La SMCCA alcanza un escenario global: adhesién a ICTAM

La SMCCA ha dado un paso historico en su proyeccion internacional al ser aceptada formalmente como So-
ciedad Miembro del International Council for Industrial and Applied Mathematics (ICIAM).

ICIAM (www.iciam.org) es la organizacion mundial que retine a 56 de las sociedades mas importantes de
matematica aplicada e industrial, con presencia en més de 40 paises, y nos enorgullece enormemente formar
parte de ella. ICTAM constituye la agrupacion mas grande e importante a nivel global en temas de aplicaciones
de las matematicas y esta es la primera vez que una asociacion cientifica mexicana es adherida como Full
Member de este importante consorcio internacional, distincién que hasta ahora solo se tenia otorgada a 25
organizaciones en todo el mundo.

Con este reconocimiento como miembros del ICIAM, logramos:

= Posicionar a la SMICCA en el mapa global de las matematicas aplicadas, reconociendo el trabajo y
la relevancia del sector académico y de investigaciéon mexicano a nivel internacional.
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s Conectamos a nuestra comunidad con una red de primer nivel, facilitando el intercambio de ideas,
la colaboraciéon en proyectos y la movilidad de investigadores y estudiantes hacia otras sociedades con
intereses similares.

s Ofrecer una voz para Meéxico en los foros de discusiéon més importantes sobre el futuro de la
disciplina y su papel en la solucién de problemas globales en los que tenemos incidencia.

» Brindar acceso privilegiado a convocatorias y congresos internacionales (como el Congreso ICTAM,
el mas grande del mundo en el 4rea, que se celebra cada 4 afios), asi como a informacion sobre programas
de vinculacién academia-industria de nivel mundial.

Este logro es el resultado de anos de trabajo consistente, de la organizacion exitosa de eventos como la
ENOAN y de la calidad cientifica de nuestros miembros. Ser parte de ICIAM es un nuevo punto de partida que
nos compromete a fortalecer nuestra sociedad, a incrementar nuestra actividad internacional y a representar
con orgullo a la matematica aplicada mexicana en el mundo.

Membresia en expansion: inete a la SMCCA

En los ultimos meses de 2024, cuando el actual Consejo Directivo de la SMCCA inici6 su periodo, la
Sociedad contaba con un total de 28 miembros regulares. A la fecha, la membresia ha crecido hasta alcanzar
40 miembros, lo que representa un incremento del 39 % en el nimero de asociados en un periodo
relativamente corto. Este crecimiento refleja el interés sostenido de la comunidad académica en formar parte
de la SMCCA, asi como el fortalecimiento de sus actividades, eventos y espacios de participacion, lo que
consolida a la Sociedad como un referente nacional en Mateméaticas Aplicadas y Computo Cientifico.

La comunidad de la SMCCA esta creciendo y queremos que muchas mas personas formen parte de
ella. Nuestra sociedad es el punto de encuentro para estudiantes, profesores, investigadores y profesionales
interesados en la computacion cientifica y las matematicas aplicadas.

;Por qué ser miembro de la SMCCA?

= Red y colaboracion: Conecta con una red nacional de expertos y entusiastas de tu area.

s Informacion y oportunidades: Accede de primera mano a convocatorias para eventos (como la
ENOAN), becas, premios (como el Mixbaal) y oportunidades de colaboracion.

= Divulgacion de tu trabajo: Participa como autor o revisor en el Boletin SMCCA,, nuestro medio
de difusion, arbitrado y registrado en el ISSN.

» Incidencia y voz: Contribuye a definir las actividades y el rumbo de la sociedad que reflejan tus
intereses académicos.

= Proyecciéon internacional: Sé parte de una sociedad que ahora es miembro de ICIAM, el consor-
cio de sociedades de mateméticas aplicadas mas grande del mundo, donde podemos colaborar en la
construccién cientifica de nuestros temas de trabajo.

El proceso para unirse es muy sencillo: visita nuestra pagina web www.smcca.org.mx en la secciéon de
‘Membresia’ para consultar los tipos de afiliacion (estudiante, individual, institucional). Amplia tus horizontes,
fortalece tu red profesional y contribuye al desarrollo de nuestra disciplina en México.
iTu talento y pasiéon tienen un lugar aqui con nosotros!

Indicadores de Impacto de la ENOAN 2025

En junio del presente afio, realizamos con éxito la XXXIII Escuela Nacional de Optimizacion y Analisis
Numérico (ENOAN 2025) en organizacion conjunta con la Escuela de Modelacién y Métodos Numéricos
(EMMN 2025) del CIMAT. Como parte de las acciones de evaluacion y documentacion del alcance de la
ENOAN-EMMN 2025, se implement6 un registro en linea mediante una cédula de inscripcion con el proposito
de recabar informacién relevante sobre el perfil personal y académico de las personas asistentes, asi como
sobre su modalidad y forma de participacion en el evento. Esto permitié construir un conjunto de indicadores
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que reflejan el interés generado por la ENOAN-EMMN 2025 entre estudiantes, profesores e investigadores
provenientes de instituciones de educacién superior publicas y privadas, institutos tecnolégicos, centros de
investigacion y otras entidades publicas y privadas, tanto de &mbito nacional como internacional. Asimismo,
estos datos permiten identificar tendencias relacionadas con los niveles de formacion, las areas teméticas de
interés y los mecanismos de participaciéon académica.

De manera complementaria, el registro proporcioné informacioén sobre quienes presentaron solicitudes
para realizar trabajos de investigaciéon o recibir apoyos para su asistencia presencial. El analisis de estos
datos constituye una herramienta fundamental para caracterizar la audiencia del evento, evaluar su evolucion
y orientar la planeacién académica y organizativa de futuras ediciones.

Numero, género y edad de los asistentes

Como se observa en la Tabla 1, se cont6 con la asistencia de 146 personas, de las cuales el 36 % (52)
correspondio al género femenino y el 64 % (94) al masculino. Los intervalos de edad considerados en el
registro abarcaron desde los 18 anos hasta mas de 64 anos, rangos representativos de la audiencia esperada
para este tipo de eventos académicos.

Tabla 1: Numero y porcentaje del género de los asistentes é 80
Q

Género Asistentes  Porcentaje (%) % 60
[0}

Femenino 52 36 240
Masculino 94 64 g

S 20
Total general 146 100 z

0

Femenino Masculino

Se observa que el mayor numero de asistentes se concentrd en el rango de 25 a 34 afios, seguido por el
rango de 18 a 24 anos. Los porcentajes méas bajos corresponden a los grupos de 55 a 64 anos y mayores de
64 anos. Un 10.96 % de los asistentes no proporcioné informacién sobre su edad.

En la Tabla 2 se muestra la distribucion cruzada entre género y edad, lo que permite analizar la rela-
cién entre ambas variables. Los resultados muestran que en todos los rangos de edad se registré un mayor
porcentaje de participacion masculina que el femenina.

Modalidad de participacién

Dado que la ENOAN-EMMN 2025 se realiz6 en modalidad hibrida, se registré la preferencia de los
asistentes por participar de manera presencial o virtual. Los resultados se presentan en la Tabla 3, donde
puede observarse una clara preferencia por la modalidad presencial, que concentr6é cerca del 77% de la
asistencia total. Ademas, puede verse que en ambos géneros se observa una preferencia consistente por la
modalidad presencial.

Ocupacion, nivel de estudios y tipo de participacion

La informacién sobre la ocupacion académica de las personas asistentes a la ENOAN-EMMN 2025 da
constancia de que el mayor porcentaje de asistentes correspondi6é a estudiantes, seguidos por profesores—
investigadores e investigadores, como puede observarse en la Tabla 4.

En cuanto al nivel de estudios de las personas asistentes, se registré una distribucién similar entre los
niveles de licenciatura y doctorado, seguidos un poco por debajo por el de maestria. Con esta distribucion,
puede verse que las personas que acuden a la ENOAN provienen, de manera casi homogénea, de los diferentes
niveles universitarios y profesionales.

Los resultados presentados en la Tabla 6 muestran una participaciéon diversa y activa por parte de la
comunidad asistente a la ENOAN-EMMN 2025. Destaca que el 33.56 % de las personas registradas particip6
como asistente en todas las actividades del evento, lo que refleja un alto nivel de interés general. De manera
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Tabla 2: Distribucién cruzada género—edad de los asistentes

Femenino Masculino Total
Edad Nimero % Numero % Nimero %
18 a 24 anos 19 45.24 23 54.76 42 28.77
25 a 34 anos 17 34.00 33 66.00 50 34.25
35 a 44 anos 6 33.33 12 66.67 18 12.33
45 a 54 anos 1 12.50 7 87.50 8 5.48
55 a 64 afios 2 33.33 4 66.67 6 4.11
Mas de 64 anos 1 16.67 5 83.33 6 4.11
Sin respuesta 6 37.50 10 62.50 16 10.96
Total general 52 35.62 94 64.38 146 100.00
50
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Tabla 3: Distribucién cruzada género-modalidad
Femenino Masculino Total
Modalidad Nuamero % Nimero % Numero %

Virtual 13 8.90 21 14.38 34 23.29

Numero de asistentes

R . ; 80
i ( a b 60
i . . . 40
' 1
Total 52 35.62 94 64.38 146 100.00 0

Presencial 39 26.71 73 50.00 112 76.71
Presencial Virtual
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Tabla 4: Ocupacion de los asistentes Investigador -
Ocupacion Asistentes  Porcentaje (%) Profesor I
Alumno 90 61.64 Prof | -
Analista 1 0.68 rotesor-inv.
Ayudante de profesor 1 0.68
Empleado 4 2.74 Empleado
Investigador 20 13.70
Pasante 3 2.05 Pasante I
Profesor 9 6.16
Profesor-Investigador 18 12.33 Analista ‘
Total general 146 100.00 ‘

Ayudante

0 25 50 75
Numero de asistentes

50
Tabla 5: Nivel de estudios de los asistentes @
€ 40
Nivel de estudios  Asistentes Porcentaje (%) _*%
(2]
Doctorado 54 36.99 o 30
Licenciatura 54 36.99 2
Maestria 37 25.34 E 20
Otro 1 0.68 3
Total general 146 100.00 10
0

Licenciatura Maestria Doctorado Otro

similar, un 32.19% correspondi6 a asistentes que, ademés de participar en el evento, contribuyeron con
la presentacion de ponencias por solicitud, lo cual evidencia un involucramiento académico significativo,
particularmente entre estudiantes y profesores—investigadores. La participacién en modalidades de exposicion
de carteles fue menor (3.42 %), mientras que el conjunto de conferencistas plenarios e invitados represento
cerca del 9% del total, lo que resalta la presencia de investigadores consolidados en el programa académico.
Asimismo, el 5.48 % de los participantes contribuyé como instructor de cursos y el 8.90% formé parte del
equipo organizador, lo que pone de manifiesto la estructura colaborativa necesaria para la realizacion del
evento y el compromiso institucional de la comunidad de la SMCCA.

Estado de nacimiento e identificacién étnica

La informacion relacionada con la entidad federativa o el pais de nacimiento de las personas asistentes, asi
como su identificacion, a través de su familia, con algtin grupo étnico, con base en los datos proporcionados
en la cédula de registro, puede encontrarse en las siguientes tablas. Las Tablas 7 y 8 muestran la informacion
correspondiente a quienes reportaron haber nacido en México y en otro pais. Del total de 146 asistentes, 139
(95.02 %) fueron de nacionalidad mexicana y 7 (4.98 %) de nacionalidad extranjera.
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Asistente total _
Tabla 6: Tipo de participacion de los asistentes
Cursos -
Tipo de participacion Asistentes  Porcentaje (%)
Asistente a todo el evento 49 33.56 Cartel l
Asistente inicamente a cursos 10 6.85 Ponencia _
Asistente y expositor de cartel 5 3.42
Asistente y expositor de ponencia 47 32.19 Conf. invitado
Conferencista invitado 6 4.11
Conferencista plenario 7 4.79 Conf. plenario .
Instructor de curso 8 5.48
Organizador del evento 13 8.90 Instructor .
Sin respuesta 1 0.68 Organizador -
Total general 146 100.00

0 20 40
Numero de asistentes

Tabla 7: Estado de nacimiento de los asistentes de nacionalidad mexicana

Estado (México) Asistentes  Porcentaje (%)

Aguascalientes 1 0.72
Chiapas 3 2.16
Chihuahua 1 0.72
Ciudad de México 40 28.78
Coahuila 5 3.60
Colima, 1 0.72
Durango 2 1.44
Estado de México 7 5.04
Guanajuato 3 2.16
Guerrero 3 2.16
Hidalgo 3 2.16
Jalisco 2 1.44
Meérida 4 2.88
Michoacéan 15 10.79
Morelos 2 1.44
Nuevo Leén 6 4.32
Oaxaca 5 3.60
Puebla 7 5.04
Querétaro 1 0.72
San Luis Potosi 2 1.44
Sinaloa, 2 1.44
Tabasco 3 2.16
Tlaxcala 2 1.44
Veracruz 3 2.16
Zacatecas 2 1.44

—
S

10.07
Total general 139 100.00

Sin respuesta




Boletin Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones 11

Tabla 8: Estado de nacimiento de los asistentes de nacionalidad extranjera

Estado (otro pais) Asistentes  Porcentaje (%)
Bogoté, Colombia 4 57.14
Putumayo, Colombia 1 14.29
Guayas, Ecuador 2 28.57
Total general 7 100.00

Del total de asistentes de nacionalidad mexicana, la mayor proporciéon reporté haber nacido en la Ciudad
de Meéxico (28.78 %), seguida por el estado de Michoacan (10.79 %), asi como Puebla y el Estado de México
(5.04% cada uno). En el caso de los asistentes extranjeros, se registro la participacion principalmente de
Colombia y Ecuador.

La informacion relacionada con la identificaciéon de los asistentes, o de sus familias, con algiin grupo étnico
se presenta en la Tabla 9, donde se registra que la mayoria de los asistentes (95.21 %) indicé no identificarse
con ningun grupo étnico. Del 3.42% que respondié afirmativamente, se reportaron identificaciones con los
grupos maya, mixteco y afro-mexicano.

Tabla 9: Identificacion con algin grupo étnico

Respuesta Asistentes  Porcentaje (%)
No 139 95.21

Si ) 3.42

Sin respuesta 2 1.37
Total general 146 100.00

Lugar de residencia e instituciones donde laboran

En las Tablas 10 y 11 se presentan los estados de la Republica Mexicana y del extranjero en los que
actualmente radican los asistentes a la ENOAN. Los resultados indican que hubo asistentes de 21 entidades
federativas del pais y de dos localidades del extranjero, concentrandose principalmente en la Ciudad de
Meéxico, Guanajuato y Michoacan.

En la ENOAN-EMMN 2025 se cont6 con representantes de 37 instituciones educativas y de investigacion,
de las cuales 34 fueron nacionales y 3 extranjeras. En la Tabla 12 se presenta la distribucién de los asisten-
tes por institucion nacional. Asimismo, se contd con la participacion de asistentes adscritos a instituciones
extranjeras, como se muestra en la Tabla 13.

Impacto y perspectivas de la ENOAN

Los resultados presentados en este informe estadistico muestran que la ENOAN-EMMN 2025 se consolido
como un foro académico de alto impacto, capaz de convocar a estudiantes, profesores e investigadores de
diversas instituciones nacionales e internacionales. La participacion activa en cursos, conferencias plenarias,
ponencias y carteles evidencia el interés sostenido de la comunidad por las areas de optimizacion, analisis
numérico y modelacion matematica.

Asimismo, los indicadores analizados reflejan una amplia diversidad en términos de niveles de formacion,
modalidades de participacion y procedencia geografica, lo que contribuye al fortalecimiento del caracter na-
cional e internacional del evento. Més alla de los indicadores cuantitativos, la ENOAN-EMMN 2025 propici6
la interaccion académica, el intercambio de ideas y la generacion de vinculos que derivaron en proyectos cola-
borativos con potencial de impacto en la academia, el sector productivo, el ambito de la salud y la sociedad
en general.

La SMCCA seguird impulsando este evento anual que nos representa como comunidad y constituye la
actividad mas embleméatica para el cumplimiento de nuestros principales objetivos. Entre los retos a futuro
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Tabla 10: Estado de la Republica Mexicana donde radican los asistentes

Estado Asistentes  Porcentaje (%)
Ciudad de México 37 25.69
Guanajuato 30 20.83
Michoacéan 21 14.58
Nuevo Leén 8 5.56
Estado de México 6 4.17
Morelos 5 3.47
Puebla 5 3.47
Coahuila 4 2.78
Tabasco 4 2.78
Yucatan 4 2.78
Aguascalientes 3 2.08
Chiapas 3 2.08
Chihuahua 2 1.39
Guerrero 2 1.39
Jalisco 2 1.39
Oaxaca 2 1.39
Veracruz 2 1.39
Colima 1 0.69
Durango 1 0.69
Querétaro 1 0.69
San Luis Potosi 1 0.69
Total general 144 100.00

Tabla 11: Lugar de residencia de los asistentes en el extranjero

Lugar Asistentes  Porcentaje (%)
Antioquia, Colombia 1 50.00
Madison, Wisconsin, EUA 1 50.00
Total general 2 100.00

Tabla 12: Instituciones nacionales de adscripciéon de los asistentes

Institucion Asistentes  Porcentaje (%)
Centro de Investigacion en Matematicas — Guanajuato 26 17.81
Universidad Nacional Auténoma de México 25 17.12
Universidad Michoacana de San Nicolas de Hidalgo 20 13.70
Universidad Auténoma de la Ciudad de México 8 5.48
Universidad Auténoma Metropolitana — Iztapalapa 6 4.11
Instituto Tecnologico de Estudios Superiores de Monterrey 5 3.42
Universidad Juarez Auténoma de Tabasco 4 2.74
Centro de Investigacion en Matematicas — Mérida 4 2.74
Otras instituciones nacionales 43 29.46
Total general 141 96.58
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Tabla 13: Instituciones extranjeras de adscripcion de los asistentes

Institucion Asistentes  Porcentaje (%)
Universidad de Pamplona 1 0.68
Universidad Nacional de Colombia 1 0.68
University of Wisconsin-Madison 1 0.68
Total general 3 2.05

del evento se encuentra su consolidacién mediante la atracciéon de nuevos piiblicos y la inclusiéon de temas
novedosos de interés cientifico y técnico.



Boletin Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones

14

Articulos



Boletin Sociedad Mexicana de Computacién Cientifica y sus Aplicaciones 15

Cuantificacién de incertidumbre sobre parametros en
modelos no lineales

Rodrigo Gonzaga Sierra, José del Carmen Jiménez Herndndez y José Andrés Christen Gracia

Centro de Investigacion en Matematicas

Resumen

En este trabajo se estudia la cuantificacién de incertidumbre en pardmetros de modelos no lineales mediante
el enfoque bayesiano. Se parte del planteamiento clasico de problemas inversos, en los cuales los pardmetros
del modelo deben inferirse a partir de observaciones ruidosas y de un modelo directo formulado como un
sistema de ecuaciones diferenciales. Dado que estos problemas suelen estar mal planteados, se introduce
la inferencia bayesiana como estrategia de regularizacién, permitiendo incorporar informaciéon a priori y
actualizarla con datos mediante la distribuciéon a posteriori. Se presentan los fundamentos teéricos del
enfoque bayesiano, asi como su aplicacién al caso particular del modelo de crecimiento logistico, destacando
el uso de métodos computacionales para aproximar las distribuciones resultantes de los pardametros del
modelo.

Palabras clave: Inferencia bayesiana; Problemas inversos; Cuantificaciéon de incertidumbre; ecuaciones diferen-
ciales; modelo logistico.

1 Introduccién

De acuerdo con [3], tradicionalmente se han modelado los problemas de ciencias, ingenieria, medioambiente y
otras aplicaciones mediante modelos mateméaticos deterministas que describen leyes naturales subyacentes.
En la actualidad, se tiende cada vez més a incorporar algin tipo de incertidumbre para representar la falta
de conocimiento sobre pardmetros y datos fisicos relevantes, variaciones aleatorias en las condiciones de
operacion o pura ignorancia sobre como debiera ser el modelo en realidad.

Suponga que se cuenta con observaciones Y = (y1,...,¥yn), tomadas en los tiempos t = (t1,...,tn),
de un fenémeno representado por medio de un sistema de ecuaciones con la siguiente estructuras:

Yi = H(Xe(t’t)) +e, 1= 1,7’l, (1)

donde H es el funcional de observaciones, es comtin por ejemplo tener €; ~; ;. 4. N(0, 02) v Xy es la solucion del
siguiente sistema de ecuaciones diferenciales ordinarias, es decir; el regresor o el modelo directo (forward):

axX,

o= F(Xo.1,0); Xo(to) = Xo. (2)

Conociendo el verdadero valor de 6 y las condiciones iniciales, resolver y conocer a Xy se le llama un problema
directo.

Sin embargo, en este caso el objetivo es hacer inferencia sobre 6 a partir de las observaciones Y, por eso se
habla de un problema inverso [14].

Se puede considerar este problema como un mapeo:

Fe(0) = (H(Xo(t1)), ..., H(Xp(tn))),
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este es el “mapeo del modelo directo”.

El mapeo inverso estd, en general; mal planteado y no tiene mucho sentido:

Fe s oyn) =0,

por eso es necesario realizar una estrategia de regularizacién, como la cuantificacién de la incertidumbre
mediante inferencia bayesiana.

Para resolver el problema de inferencia dado en la ecuacién (1) se propone que las entradas de 6 sean variables
aleatorias que siguen alguna distribucién de probabilidad. Esto no necesariamente tiene un significado fisico
o intrinseco, sélo se sabe que se tiene incertidumbre acerca de los valores que pueden tomar estas variables
aleatorias, y que la distribucién de probabilidad cuantifica su incertidumbre. En este sentido, en el presente
trabajo se aborda el problema de cuantificar la incertidumbre desde la perspectiva Bayesiana, en donde se
obtiene la distribucién a posteriori de los parametros de interés.

2 Teoria Bayesiana

El trabajo de Thomas Bayes, publicado de manera péstuma en 1763, ha tenido una importante consecuencia
en la forma de hacer inferencia estadistica, este provee una manera formal de combinar el conocimiento a
priori (o inicial) que se tiene sobre un fendémeno, con el nuevo conocimiento que se adquiere a partir de
nuevos datos y mediciones sobre el mismo, obteniendo as{ un conocimiento a posteriori (o final). Es decir, el
conocimiento a priori se actualiza con la nueva informacién, y dicho conocimiento a posteriori se convertira
en el nuevo conocimiento a priori, a la espera, otra vez, de nueva informacion que lo actualice. En este seccién
se utilizaron las siguientes bibliografias: [11], [1], [13], [6] v [8].

2.1 Distribucién a priori y a posteriori

En estadistica bayesiana, el término comin para referirse a la informacién con la que cuenta el investigador es
el de informacién subjetiva, y es importante aclarar, al menos brevemente, qué se entiende en este contexto
por el adjetivo “subjetiva", ya que puede tener una connotacion distinta a la que se requiere bajo el enfoque
bayesiano.

Al hablar de informacién subjetiva se refiere a toda aquella informacién a priori que se tiene en relacién al
fenémeno aleatorio de interés, antes de recolectar o realizar nuevas mediciones sobre el mismo, y esto incluye:
datos histéricos, teorias, opiniones y conjeturas de expertos, conclusiones basadas en estudios previos.

El primer paso en la inferencia estadistica bayesiana es traducir todo lo anterior en una distribucién de
probabilidad a priori (o inicial). El segundo paso consiste en recolectar o realizar nuevas mediciones, y
actualizar la distribucion de probabilidad a priori, para obtener, mediante el teorema de Bayes, una distribucion
de probabilidad a posteriori (o final).

Sera esta ultima la mejor descripcion posible de la incertidumbre, de acuerdo a toda la informacién disponible,
y por tanto, serd la herramienta fundamental a partir de la cual se realiza inferencia estadistica.

Para referirse a un modelo probabilistico paramétrico general se denota como py|g(z|f), donde la
funcién px|g(-|0) puede ser una funcién de masa de probabilidades de una variable (o vector) aleatoria discreta
o bien una funcién de densidad de una variable aleatoria continua. El escribir dicha funcién condicional en
el pardmetro (o vector de pardmetros) 6 se debe al hecho de que, una vez dado un valor especifico de 6, la
funcién de probabilidad queda totalmente determinada.

Para referirse a una muestra aleatoria (m.a.) se utilizara la notaciéon X = (X1,...,X,,) y para referirse a
una observacién muestral se utilizard x = (x1,...,z,). Por espacio paramétrico se entendera como el
conjunto © de todos los valores que puede tomar 6, y por familia paramétrica se entenderd como un conjunto
P = {pxjo(alf) : 6 € ©).

Siguiendo a [8], la estadistica bayesiana modela la incertidumbre que se tiene sobre 6 probabilisticamente. Esto
es, considere el valor de # como una variable (o vector) aleatoria con una distribucién de probabilidad
a priori (o inicial) p(#), de la misma forma se denotard solo como p(-), sin importar si 6 es una variable
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aleatoria discreta o continua. Se trata de una distribucién basada en experiencia previa (experiencia de
especialistas, datos histéricos, etc.) antes de obtener datos. Luego se procede a observar los nuevos datos
(obtencién de la muestra) x = (x1,...,2,) y combina esta informacién con la distribucién a priori mediante
el teorema de Bayes y se obtiene una distribucién de probabilidad a posteriori (o final):

<) — px0(x,0)  pxje(x|0)-pe(d)
peix(P) ==L 00~ Trxio(18) - po(#)d8’ ®)

Note que pe|x (f|x) es también una distribucion de probabilidad de 6, pero a diferencia de la distribucién a
priori pg(#) toma en cuenta tanto la informacién contemplada en pg(#) como la informacién contenida en
los datos observados x = (z1,...,z,). La distribucién a posteriori de la variable aleatoria © es la base para
hacer inferencias sobre 6.

Tenga presente que, por un lado, la funcién de verosimilitud px|e(x|f) y pe(f) son distribuciones de
probabilidad, y por otro:

px(x) = / pxio(x16) - po(6) db,

es la probabilidad (o densidad) conjunta de la muestra x = (x4, ..., z,) observada a partir del vector aleatorio
X = (Xy,...,X,). Pero hay que estar consciente de que p(x) es constante respecto a 6, por lo que se puede
escribir:

peix(0]x) < pxje(x|0) - pe(0), (4)

note que px|o(x|0) = pxje(r1,22,...,2,]0), es la probabilidad conjunta de la muestra condicional en 6,
llamada funcién de verosimilitud, denotada también por L(6|x). En el caso particular de que los componentes
del vector aleatorio X = (X1, ..., X,,) resulten ser independientes, se tiene que:

px|o(x]0) = H pxje(z;]0).

Puede proponer como estimador puntual de 8 alguna medida de tendencia central, por ejemplo la mediana o
la esperanza:

i = B(0) = /Gp@‘x(ﬁ\x) o, (5)

Y aun en el caso de que no se cuente con informaciéon muestral se puede calcular 6 utilizando po(f) en lugar
de p@‘x(0|x).

En algunos casos en los que, en vez de conocer el vector de pardmetros 6, lo que interesa es describir el
comportamiento de observaciones futuras del fenémeno aleatorio en cuestién, esto es, hacer prediccién.
Dado un valor de 6, la distribucién que describe el comportamiento de la observacién futura X,, es px,je(z|6).
El problema es que por lo general el valor de 6 es desconocido. Por lo regular, la estadistica frecuentista
aborda este problema estimando puntualmente a 6 con base en la muestra observada, y dicho estimador 0
es sustituido en p Xn|@(:c|§). Desde la perspectiva bayesiana, el modelo px,,je(x|f) junto con la distribucién
a priori pe(#) inducen una distribucién conjunta para el vector aleatorio (X,,,®) mediante el concepto de
probabilidad condicional:

pxn,@(l‘,@) prn|e<$|9)27@(9)-

Si se marginaliza la distribuciéon de probabilidad conjunta anterior se obtiene:

pxn(x):/px,m@(xﬁ)d&
o)

De los dos resultados anteriores, se tiene:

px, (z) = /@ P, 0 (z]0)po (6) db. (6)
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A px, () se le denomina distribucién predictiva a priori (o inicial) y describe el conocimiento acerca de
una observacién futura X,, basado tinicamente en la informacién contenida en pg (). Nétese que px, () no
depende ya de 6.

Para hacer estimacién por regiones, por ejemplo, si desea calcular la probabilidad de que el vector de parametros
0 pertenezca a una regiéon A C O:

P(o e A)= /A poyx (6]%)d8,

o bien, dado un valor § € (0,1), se busca un A C © tal que P(f# € A) = 4. Con frecuencia la solucién para A
no es unica. Cabe aclarar que si dim(©) = 1 las regiones son subconjuntos de R y que un caso particular de
estas regiones son los intervalos. En este sentido, la estimacion por regiones en estadistica bayesiana es mas
general que la estimacién por intervalos de la estadistica frecuentista.

Una vez obtenida la muestra, el modelo px|g(z|f) y la distribucion a posteriori pgx(f|x) inducen una
distribucién conjunta para (X, ©) condicional en los valores observados x = (z1,...,2y):

r,0,x
px.ex(z,0]x) = Pxox(z.f,x)
px (%)

_ pxjex(x]8,x)pe x (0, x)
B px(x)
= pxje,x (710, x)pe|x (0]x)
= px,e(z|0)pex (0]%).
En lo anterior, px|e,x (2|0, %) = px,e(x|f) se justifica por la independencia condicional de X y X = (X1, ..., X,)

dado 6. Si se marginaliza la distribucién conjunta condicional anterior:

pix(alx) = [ px.ox(a,01x) .
Combinando los dos resultados anteriores:

pxx(]x) = / pxjo(2]0)peyx (0]x) d. (7)

A pxx(z|x) se le llama distribucién predictiva a posteriori (o final), y describe el conocimiento acerca
de una observacion futura X basado tanto en la informacién contenida en pg(#) como en la informacién
muestral X = (21, ..., 2, ). Nétese nuevamente que px|x (z[x) no depende de 6.

Asi que para hacer prediccién sobre observaciones futuras del fenémeno aleatorio que esté modelando se usa
px (x) o bien px|x(z[x), segin sea el caso. Y de manera andloga a lo mencionado sobre inferencia bayesiana,
una manera simple de hacer prediccién puntual, por ejemplo, de una observacién futura X podria ser mediante
alguna medida de tendencia central, como la mediana o la esperanza:

& =E(X) :/ T px|x (z[x) d,
R(X)

donde R(X) es el rango de la v.a. X. También, una manera de calcular la probabilidad de que una observacién
futura se encuentre en un conjunto A C R(X) serfa:

PUX € 4D = [ pxix(aix)da.

Las ecuaciones (3), (6) y (7) constituyen el modelo general de la estadistica bayesiana. Cualquier proble-
ma estadistico tratado bajo el enfoque bayesiano implica la obtencion y utilizaciéon de las distribuciones
correspondientes.

3 Analisis bayesiano del problema inverso

Una vez conocidas algunas bases sobre probabilidad y estadistica, estadistica bayesiana, se puede realizar
inferencia bayesiana para resolver problemas inversos. El caso particular que se abordard, sera el del modelo
de crecimiento logistico. Para el desarrollo de este capitulo se utilizaron las siguientes bibliografias: [4], [8],
[15], [10] y [16].
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3.1 Aproximacién bayesiana a inferencia

Se considera un fenémeno representado por medio de un sistema de ecuaciones diferenciales ordinarias.
Suponga que se cuenta con observaciones y = (yi,...,Yy,) tomadas en los tiempos ¢t = (¢1,...,t,), con la
siguiente estructura:

Y; = H(Xg(tz)) +e, t=1,n (8)

Como se menciond en la introduccién, el objetivo es hacer inferencia sobre 6 a partir de las observaciones. Para
resolver el problema de inferencia (8) se propone que las entradas de 6 sean variables aleatorias que siguen
alguna distribucién de probabilidad. La incertidumbre se cuantifica con una medida de probabilidad. El agente
interesado en conocer el pardmetro 6, establece una variable aleatoria © con su densidad de probabilidad

po(-),

Los valores que © toma son los posibles valores para los pardmetros, en este caso ® = (6, 3) toma valores
(0,0). Esta medida de probabilidad cuantifica la incertidumbre que tiene el agente respecto a los posibles
valores de los pardmetros en el modelo, Py (6, 0) es la distribucién a priori .

En presencia de datos Y =y, y suponiendo un modelo para la distribuciéon conjunta:

pY|<I>(Y|97 a),

para Y, donde E(y; | 6,0) = H(Xy(t;)). Al observar los datos Y, interesa inferir el valor de 6. La teoria
bayesiana prescribe que calcular la distribucién condicional de las incégnitas de interés dados los datos, se
calcula utilizando el teorema de Bayes para variables aleatorias:

oy (8, 0ly) = leé(y]li; ?})’1;@(9, 7)

pa|y (0, 0ly) es la distribucién a posteriori; ademds pg (60, 0) es la distribucién a priori de (©,%) y

py(y) = / py.0(y. 0, 0)dbdo,

pe() = [ pria(v16,0)ps (6,0)dbdo
es la constante de normalizacion, también llamada verosimilitud marginal.

En el caso en que el error de cada observacion representa un ruido aditivo gaussiano, la funcién de verosimilitud

es:
n

Prio(¥16,0) = 0" (2m) " exp (—Zi (v - H<X9<ti>>>2> .

i=1

Note que, cada vez que se evalué py|s(y|0,o) debe resolverse a Xy, lo cual se hace de forma aproximada por
medio de un método numeérico.

Como consecuencia, el sistema de ecuaciones diferenciales ordinarias se resuelve utilizando un método numérico
y la inferencia se realiza, no en el modelo exacto anterior, sino en un modelo aproximado, a saber:

yi = H(Xg(t:) +ei, & ~ N0, o?)

donde Xe’,’ denota la soluciéon aproximada proporcionada por el método numérico. La nueva verosimilitud
derivada del modelo es:

Prialylt o) = o (2m) " exp (—2}7 S (i H(Xm»?) .
i=1
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Para calcular pg|y (0, c|y) cominmente se usan métodos tipo Monte Carlo via cadenas de Markov (MCMC).
Este célculo a su vez va a estar afectado por la precisién del método numérico usado para calcular a Xy.
La distribucién a posteriori numérica es:

h
py|<1>(Y|07U)p<I>(ng)
h
p 970'y = )
wiy (6.715) P (y)

donde p(f,0) es la distribucién a priori en (0,0) y

Pel) = [ o516, 0)pa(6.0)d8do,

es la constante de normalizacidn, también llamada verosimilitud marginal. Note que dado que no hay
otra alternativa que utilizar la distribucién a posteriori numérica, hay una necesidad real de comprender y
controlar el error incurrido al trabajar con pg|y (0, oly) y la aproximada numéricamente p%lY(G, aly).

En el anexo A se menciona que un método numérico es de orden p, si e5(0) = O(hP), es decir, e,(0) < KhP,
con K una constante global que no depende de h. [2] demuestran que bajo un tamaiflo de paso h, se garantiza
que practicamente no existe diferencia entre la distribucién a posteriori tedrica pg|y (€, cly) y la aproximada
numéricamente pg‘Y(G, oly). Con lo cual se le da validez al andlisis de inferencia que se realice a partir de la
distribucién a posteriori aproximada numéricamente.

Los métodos estadisticos tradicionales se centran en la estimaciéon puntual. El estimador de maxima a posteriori
(MAP) se considera como una versién regularizada del o el estimador de
minimos cuadrados.

log(p%y(@, oly)) =C+ + log ps (0, 0)

1 ¢ h 2 . \
=C - 252 ;(?/i, —H(Xy (t:)))" +logpa(0,0),

donde C' es constante respecto a ®. Si se supone que hay independencia entre las variables 8 y o, se tiene que:

n

1

553 2w = H(X} (1)) +logpe (#) +log px(o) 9)
i=1

log(py|(y]0,0)) = C —
Esta tltima ecuacién se llamard objetivo, y se utilizard mas adelante.

3.2 El modelo logistico

De acuerdo con [9, 15], una poblacién es un grupo de organismos vivos (plantas, animales, microorganismos,
etc.) que estd compuesto por individuos con un comportamiento dindmico similar. Las poblaciones cambian
de tamaiio (crecen o disminuyen) debido al nacimiento, muerte y migracién.

La dinamica de poblaciones estudia las leyes que rigen los cambios de la poblacién en el espacio y el
tiempo. Se centra en cémo las poblaciones cambian con el tiempo. Ademds, una poblacién se describe por su
nimero de individuos.

En 1798, Thomas Robert Malthus, propuso su modelo bajo las siguientes hipotesis:

1. La poblacién es homogénea (todos los individuos son idénticos).

2. El medio es homogéneo, es decir, las caracteristicas fisicas, bioldgicas, etcétera, son las mismas en el
hébitat.

3. No hay limitaciones ni de espacio ni de alimento para el crecimiento de la poblacién (la tasa de cambio
de la poblacién en el tiempo ¢ es proporcional a la poblacién en ese instante de tiempo).

4. La poblacién estd aislada (no hay migracién).
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5. Las tasas de natalidad y de mortalidad son constantes.
Denote por:

= X (t) el ntimero de individuos en el tiempo ¢,
= (3 la tasa de natalidad, y

= 4 la tasa de mortalidad,

con By u positivos, entonces, por las hipétesis dadas, se tiene el siguiente modelo:

dX (1)
dt

— BX() - pX (1),

o bien,

donde r = 3 — > 0 y se le conoce como tasa de crecimiento instantdneo o tasa de crecimiento per cépita.

Cuarenta afos més tarde, en 1838, el matematico belga Pierre Frangois Verhulst (1804-1849) modificé el
modelo de Malthus, cambiando la hipotesis 3:

» Los recursos (alimentos o tamaio del medio) son finitos.

Con esta nueva hipdtesis habra competencias entre la misma especie, asi Verhulst propuso el modelo de

crecimiento logistico:
dX(t X(t
Q — TX(t) ( _ ()> ,

dt K
o bien,
P Lx (- X)), (10)

donde L = £ y se llama capacidad de carga.

Dada una condicién inicial X (0) = Xy, la ecuacién (10) tiene como solucidn:

KXOBLKt
X(t) = 11
1) = Fr, (k=T (1)
o bien,
K
X(t)=

Ko —rt

1+ (£ 1) e

A la ecuacién (10) se le llama ecuacién logistica. A pesar de que el modelo de crecimiento logistico tiene a
esta como solucién explicita, se utilizara el programa odeint, que se encuentra en la paqueteria scipy.integrate

implementado en Python; pues realizarlo de esta manera podré ser replicable para cualquier otro modelo no
lineal al que se pueda solucionar con un método numérico.
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3.3 Simulacidén estocastica y aplicacion

De acuerdo con [4], las evaluaciones de incertidumbre también pueden adoptar la forma de intervalos o
regiones de credibilidad, similares a los intervalos de confianza utilizados en la estadistica cldsica. En general,
para realizar inferencias sobre las incégnitas en el modelo y finalmente responder preguntas relevantes de
investigacion, se debe ser capaces de analizar la distribucién a posterior:.

Conforme a [7], aunque no es prudente intentar analizar directamente las propiedades de la distribucién
posterior, existen métodos indirectos que puede proporcionarnos informacién considerable. En lugar de pensar
en la distribucién posterior como una funcién, se puede utilizar el hecho de que es una distribucién de
probabilidad y, por lo tanto, puede analizarse mediante métodos estadisticos, siempre que exista una manera
de obtener una muestra.

Para eso, se utilizard un método de Monte Carlo via Cadenas de Markov (MCMC). Los métodos de
MCMC representan un conjunto de algoritmos que permiten obtener muestras aleatorias de una determinada
distribucién de probabilidad objetivo, de la cual es dificil muestrear directamente. Estos métodos se basan en
construir una cadena de Markov cuya distribucion de equilibrio, es la distribucién objetivo. De esta forma, los
estados de la cadena de Markov después de que esta ha alcanzado el estado estacionario representan muestras
de la distribucién objetivo.

La principal ventaja de los métodos de Monte Carlo es que podemos muestrear de una medida de probabilidad
solo conocida hasta una constante de normalizacién. La principal limitacién de este enfoque es que los métodos
de Monte Carlo se deterioran con el aumento de la dimension del parametro.

El algoritmo base para realizar MCMC, es el algoritmo Metropolis-Hasting, este tiene la siguiente
estructura:

Algorithm 1 Algoritmo Metropolis -Hasting

Sea f la distribucién de interés. Como pre-proceso se genera el valor incial X ) ~ o (con g una distribuciéon
de probabilidad con el mismo soporte que f). Para generar los valores t = 1,2,... de la cadena de Markov, se
hace:

1: Siendo X; = z; el estado actual de la cadena de Markov se propone como candidato para el siguiente
elemento de la cadena a y; ~ ¢(-|z¢), con ¢ una distribucién de probabilidad instrumental.

2 Se hace X )yt con probabilidad p(z¢, y:)
' (t+1) = x¢ con probabilidad 1 — p(zy, y¢)

fW)q(zly) }

con p(x¢,y;) = min {1’ f(z)q(y|x)

En general, los métodos de MCMC son muy complejos, requiriendo una calibracién cuidadosa por parte de
un experto, tanto para optimizar la velocidad de convergencia , como para identificar cuanto tiempo debe
simularse la cadena antes de extraer la muestra. Una solucién a este problema es el uso de una biblioteca
de Python escrita por [5], llamada el t-walk, disponible en http://www.cimat.mx/~jac/twalk/. El t-walk
utiliza un tipo especial de algoritmo Metropolis-Hastings de propdsito general que se ajusta autométicamente
para muestrear de cualquier distribucién cuando se le proporcionan las funciones de soporte y el logaritmo de
la funcién objetivo, en este caso la ecuacién (9). Para iniciar el MCMC se debe afnadir la cantidad de muestras
a obtener y dos puntos iniciales.

Simulando un conjunto de datos sintético con la ecuacién (11), con el modelo de error y; = X (¢;) + €;, donde
gi ~ N(0,0?%), y los siguientes pardmetros:

X(0) =100, L =1/1000, K =1000, o = 30.
Se consideran 26 observaciones en los tiempos t; distribuidos regularmente entre 0 y 10.

Para realizar la cuantificacién de incertidumbre para esta simulacion, se tiene:

yi = H(Xo(t:)) + 5, 1€{1,2,...,n},
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donde H(z) =z y &; ~ N(0,0?%), ademés el modelo directo es,

dXy
dt

F(Xg,t,0) = LX(K — X),

= F(Xeatve)a

donde # = (L, K). Suponiendo independencia a priori sobre los pardmetros K, L y o, las distribuciones a
priori propuestas son:
K ~ Gamma(2,1/0,001),

L ~ Gamma(2,1/0,001),
o ~ Gamma(2,1/0,001),

dado que lo tinico que se “conoce” sobre estos parametros es que son positivos, por esto se tomaran valores de
la distribucién gamma, la cual toma solo valores positivos.

Histograma de K Histograma de L

0.05 | W= Distribucion a posteriori H W= Distribucién a posteriori
~-= Valor verdadero = 1000 16000 i ---- Valor verdadero = 0.001
— Distribucién a priori — Distribucién a priori

Densidad

04
990 1000 0.00090 0.00095 0.00100 0.00105 0.00110
Valores Valores

(a) Distribucién a posteriori del pardmetro K. (b) Distribucién a posteriori del pardmetro L.

Histograma de o

0.08 i = Distribucién a posteriori
: -~ Valor verdadero = 30
— Distribucién a priori

Densidad

40
Valores

(c) Distribucién a posteriori del pardmetro o.

Figura 1: Distribuciones a posteriori de los parametros del modelo.

En las Figuras 1a, 1b y 1c, se tienen los histogramas de 100000 valores de la distribucién a posterior: de K, L
y 0. Se puede observar que el valor verdadero, con el que se realizé la simulacién estd dentro de la distribucién
a posteriori, ademés de estar cercano al punto con mayor credibilidad. Ademads, note que la distribucién «
priori queda muy por debajo de la distribucién a posteriori.

En la Figura 2 se muestran los datos simulados, la solucién del modelo logistico con los parametros reales, la
curva que mejor se ajusta la cual se forma utilizando los valores de mayor credibilidad en cada distribucion a
posteriori. Note que la curva con los parametros reales y el mejor ajuste estd una encima de la otra, salvo un
pequeno error que es provocado por el error del método numérico. Por dltimo, la parte sombreada son curvas
solucién a partir de valores de las distribucién a posteriori para cada parametro.

3.4 Aplicacién: Saccharomyces cerevisiae

Las levaduras son hongos que forman sobre los medios de cultivo colonias pastosas, constituidas en su mayor
parte por células aisladas que suelen ser esféricas, ovoideas, elipsoideas o alargadas. Los genetistas [12]
realizaron un estudio para comparar la capacidad de sobrevivencia de cepas haploides, diploides y tetraploides
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Poblacién

Curvas del modelo logistico utilizando valores de la a posteriori
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Figura 2: Incertidumbre del ejemplo de simulacion.

de la levadura Saccharomyces cerevisiae al ser expuestas a mutaciones inducidas por metanosulfonato de etilo,
evaluando las ventajas del enmascaramiento en niveles altos de ploidia, asi como la eliminacién de mutaciones
en células haploides.
[15] recopilaron los datos del crecimiento de esta poblacién de levaduras en diferentes horas, los datos se
muestran en la Tabla 1.

En la figura 3a se puede observar el crecimiento de la levadura durante las primeras 36 horas, donde es claro
observar que siguen el comportamiento de un modelo de crecimiento logistico donde su capacidad de carga
llega aproximadamente a 250.

Tamafio de la poblacion (x10¢/mL)

(a) Crecimiento de la levadura Saccharomyces cerevisiae.

50

00

Tamaiio de la poblacién (x10%/mL)

Tiempo (hrs)

(b) Crecimiento de Saccharomyces cerevisiae, con el ajuste
por minimos cuadrados.

50

00

Saccharomyces cerevisiae

@ Datos Observados
—— Estimada por minimos cuadrados .

Tiempo (hrs)

Figura 3: Anadlisis del crecimiento de Saccharomyces cerevisiae.

[15] sugieren el modelo logistico y muestran que las estimaciones de los pardmetros son:

K = 211,538461,

L = 0,0026,

35

como los mejores para el ajuste de los datos al modelo. Cabe mencionar que no especifican el método utilizado
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Tiempo Tamano Tiempo Tamaino

(hrs) (x10%/mL) (hrs) (x10%/mL)
0 0.200 19 209
1 0.330 20 190
2 0.500 21 210
3 1.10 22 200
4 1.40 23 215
5 3.10 24 220
6 3.50 25 200
7 9.00 26 180
8 10.0 27 213
9 25.4 28 210
10 27.0 29 210
11 55.0 30 220
12 76.0 31 213
13 115 32 200
14 160 33 211
15 162 34 200
16 190 35 208
17 193 36 230
18 190

Tabla 1: Crecimiento de la levadura Saccharomyces cerevisiae.

para dichas estimaciones.
[17] presenté las siguientes estimaciones de los mismos pardmetros calculados por minimos cuadrados:

K = 208,855224, L = 0,00263224.
La figura 3b muestra la grafica del crecimiento y la curva con los pardmetros estimados en [17].

Usando estos datos, se realiza el procedimiento de cuantificacién de la incertidumbre suponiendo el modelo de
crecimiento logistico como el regresor. Este proceso se realiza de manera similar al ejemplo de simulacién, es
decir, se toman las mismas distribuciones a priori.

Histograma de K
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Figura 4: Distribucién a posteriori del parametro K, Saccharomyces cerevisiae.

En las Figuras 4, 5 y 6, se tienen los histogramas de 100000 valores de la distribucion a posteriori de K, L
y 0. Se puede observar que los valores estimados por [15], [17] estdn dentro de la distribucién a posteriori,
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Histograma de L
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Figura 5: Distribucién a posteriori del pardmetro L, Saccharomyces cerevisiae.
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Figura 6: Distribucién a posteriori del pardametro o, Saccharomyces cerevisiae.

ademas de estar cercanos al punto con mayor credibilidad, puede parecer que los valores estimados son los
mismos pero se debe a la escala, estos si difieren un poco. Ademads, note que la distribucién a priori queda
muy por debajo de la distribucién a posteriori. Por dltimo, se puede ver la distribucién a priori, donde hay
un gran cambio entre la distribucién a priori y la distribuciéon a posteriori.

En la Figura 7 se muestran los datos recopilados de la Tabla 1, la solucién del modelo logistico con los
pardmetros de [17], [15] y la curva que mejor se ajusta, esta tltima se realizé utilizando los valores de mayor
credibilidad en cada distribucion a posteriori. Note que la curva con los parametros dados por Vazquez se
aleja un poco de las otras dos curvas, ademas la curva de mejor ajuste con la de Stewart y Day coinciden, por
ese motivo se colocé de manera punteada, para distinguir entre cada una.

La Figura 7 es un ejemplo de una aplicacion de la distribucién a posteriori. Ademds, como se tiene varios
valores de esta distribucién se pueden encontrar valores de interés como las medidas de localizacién, medidas
de variabilidad, coeficiente de asimetria y coeficiente de curtosis o algin otro calculo dependiendo del interés
del investigador.

El area sombreada se formé tomando curvas solucién a partir de valores de las distribuciéon a posteriori
para cada parametro. El uso de un area sombreada alrededor de los pardmetros que mejor se ajustan en las
graficas de modelos es una técnica comun en el analisis de datos. Esta drea sombreada suele representar la
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Curvas del modelo logistico utilizando valores de la a posteriori
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Figura 7: Incertidumbre de Saccharomyces cerevisiae.

incertidumbre o la variabilidad de los parametros del modelo, en este caso, obtenida de la distribucion a
posteriori.

Esta drea sombreada proporciona una visualizacion clara de la incertidumbre en las estimaciones de los
parametros del modelo. Muestra cémo varian las predicciones del modelo debido a la variabilidad en los datos.
Esto es crucial en el enfoque bayesiano, donde la incertidumbre en los parametros es una parte integral del
analisis, por ejemplo, permite comunicar de manera efectiva la precision y la confianza en las predicciones del
modelo. El investigador puede ver, no s6lo una linea de mejor ajuste, sino también cudnto pueden variar
las predicciones. Esto es importante en contextos de toma de decisiones, donde entender la variabilidad puede
influir en las decisiones basadas en los resultados del modelo. Ademads, facilita la comparacién entre diferentes
modelos o ajustes. Al superponer areas sombreadas de diferentes modelos, se puede ver rdpidamente cuél
modelo proporciona predicciones mas precisas o con menos incertidumbre.

Las dreas sombreadas pueden ayudar a identificar puntos de datos que se encuentran fuera de las predicciones
esperadas, senalando posibles anomalias o la necesidad de ajustar el modelo. Por todo esto, es mejor optar en
el futuro por resolver problemas inversos utilizando estadistica bayesiana, no sélo usar métodos estadisticos y
numéricos clasicos.

4 Conclusiones

El analisis de cuantificacion de incertidumbre bayesiana de problemas inversos continua siendo un tema de
investigacion desafiante. El presente articulo es una introduccion a realizar inferencia en el aspecto del analisis
bayesiano de sistemas de ecuaciones diferenciales ordinarias en el contexto de problemas inversos, en particular
el caso del modelo logistico.

Los problemas inversos surgen en una variedad de aplicaciones cientificas y de las ingenierias, donde los
parametros del modelo deben ser estimados a partir de datos observacionales. Estos problemas se caracterizan
por errores observacionales, errores de modelo y problemas de mal planteamiento que generan incertidumbres en
los parametros del modelo. Los enfoques estadisticos bayesianos permiten realizar simulaciones y predicciones
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con incertidumbres cuantificadas.

Se ha destacado la dificultad anadida que presentan estos problemas debido a la incapacidad de tratar
analiticamente la funcion del regresor, lo que nos obliga a recurrir a aproximaciones numéricas. A pesar de
que cominmente se pasa por alto la sustitucién de la solucién tedrica por una aproximacién numérica. Se
ha sefalado el trabajo de investigacién que [2] ha llevado sobre realizar inferencia sobre la distribucién a
posteriori nimerica, en lugar de la téorica.

Como se menciond, la distribucién a posteriori puede tomar la forma de un érea sombreada alrededor de los
ajustes del modelo, esta drea sombreada muestra la incertidumbre en las estimaciones de los parametros del
modelo. Muestra como varfan las predicciones del modelo debido a la variabilidad en los datos. El investigador
al resolver el problema inverso utilizando este método no solo obtiene los mejores parametros que se ajustan,
sino toda una distribucién para ellos, lo que ayuda a ver cuanto pueden variar las predicciones.

Uno de los logros destacables de este trabajo es presentar de manera detallada un cédigo realizado en Python,
para la obtencién de la distribucién a posteriori para los parametros de un modelo no lineal. Ademaés, que el
mismo genera histogramas de esta distribucién, lo que ayuda a comprender a la misma y analogizar entre
distribuciones mas conocidas. Este cddigo no lo muestran en trabajos del mismo tema, con este nivel de detalle.
Los codigos se encuentran disponibles en https://github.com/RodGon22/RepositarioTesisRodrigo o
escaneando el codigo QR de la Figura 8.

Por ultimo, la aplicacién como la que se mostrd en la seccion 3 ilustra cémo un enfoque probabilistico
para codificar errores en el proceso de modelado puede conducir a simulaciones predictivas con medidas de
incertidumbre confiables en problemas del mundo real. Sin embargo, aplicaciones més rigurosas conllevan mas
desafios relacionados con la computacién de alto rendimiento, alta dimensionalidad en datos y parametros,
prediccién y otros que no se abordaron en este trabajo que se pueden considerar problemas a futuro.

Figura 8: QR del repositario, generado con Google.
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Coloracion en graficas de mapas en la Tierra y mapas en
la Luna

Ana Teresa Calderén Judrez

Resumen

La coloracion de mapas es un problema clasico en la Teoria de Grafos, donde cada pais se modela como un
vértice y las fronteras entre paises como aristas. El Teorema de los Cuatro Colores establece que cualquier
mapa plano puede colorearse con cuatro colores sin que dos regiones adyacentes compartan el mismo color.
En este articulo, exploramos la generalizacién del problema de coloracién de mapas al caso de la Tierra y la
Luna, conocido como el Earth Moon Problem, propuesto por Ringel. Este problema busca determinar
el niimero minimo de colores necesarios para colorear un mapa donde cada pais en la Tierra y su colonia
lunar deben recibir el mismo color, respetando la restriccién de que las regiones adyacentes en cualquiera
de los dos cuerpos celestes deben tener colores distintos.

Nuestro principal aporte es demostrar que el problema de la 3-coloracion de la Tierra-Luna es NP-completo,
mediante una reduccién desde 3-SAT, lo que implica que no existe un algoritmo eficiente para resolverlo
en general (suponiendo P # NP). Ademds, complementamos demostraciones previas que aparecian
incompletas en la literatura y modelamos el problema como un problema de satisfaccion de restricciones
(CSP), lo que permite un andlisis més profundo de su complejidad computacional.

Este trabajo no solo aporta una nueva demostracién de que el problema de coloracién de la Tierra-Luna
con 3 colores es NP-completo, sino que también abre la puerta a futuros estudios sobre su dificultad para
diferentes niimeros de colores.

Por ultimo, describir el problema de coloracién de la Tierra-Luna a través de grafos, un caso abierto en la
coloracién de grafos que extiendel problema de la coloracién de mapas planos. En términos de grafos, esto
se puede reformular como la bisqueda del nimero cromatico maximo de un grafo G que es la unién
de dos grafos planares (sobre el mismo conjunto de vértices). Se demuestra mediante induccién que G es
12-coloreable, como observé Heawood. Ringel conjetur6 que el Problema de la Tierra-Luna era 8-coloreable
pero Sulanke reporté un ejemplo que requiere 9 colores, atin no se conoce si existen configuraciones que
requieran 10, 11 o 12 colores.

Palabras clave: Problema de la Tierra-Luna; Coloracién en grafos; Teorema de los cinco colores; Teorema de
los cuatro colores; Complejidad computacional; Problemas de Satisfaccién de restricciones; 3SAT; Reduccién
de problemas; Clases de problemas.

1 Introduccién

La coloracion de mapas de la tierra es uno de los problemas de optimizacién mas estudiados en la Teoria de
Grafos. El problema de la coloracién de un mapa consiste en asignar un color a cada vértice (pais) de tal
manera que dos vértices conectados por una arista obtengan colores diferentes, minimizando el nimero total
de colores utilizados.

Ahora, la siguiente afirmacién no es verdadera:

“Es posible asignar uno de cuatro colores a cada pais en cualquier mapa, de manera que ningin
par de paises que compartan una frontera tengan el mismo color.” [6]

Sin embargo, este no es el enunciado del famoso Teorema de los Cuatro Colores, que fue demostrado hace mas
de 30 anos utilizando numerosas comprobaciones por computadora.
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La figura 1 muestra un pequeno ejemplo de un mapa que necesita cinco colores si cada par de paises adyacentes
debe recibir colores diferentes. La caracteristica importante es que un pais (#5) es desconectado y estd
compuesto por dos regiones.

(05

4

Figura 1: Un mapa plano que necesita cinco colores. Mapa tomado de [6].

Los mapas que incluyen paises desconectados son posibles; un ejemplo es el mapa de América del Norte. Esto
plantea la siguiente pregunta: ;Es posible colorear el mapa actual del mundo con cuatro colores de manera
que todas las partes de cada pais reciban el mismo color y que dos paises diferentes con un arco fronterizo en
comun no reciban el mismo color? Para dar una respuesta afirmativa a dicha pregunta nos apoyaremos en el
siguiente teorema.

Teorema de los Cuatro Colores: Este teorema establece que cualquier mapa dibujado en el plano puede
colorearse con solo cuatro colores, de tal manera que cada par de regiones conectadas que comparten un borde
reciban colores diferentes.

Escrito en términos de grafos:

Teorema 1.1. [7]

Cualgquier grafo planar simple G es 4-coloreable.

Donde:

Definicién 1.2. Un grafo es una pareja ordenada G = (V, E), donde V es un conjunto no vacio de objetos
llamados vértices (nodos) y E es un conjunto de aristas (lineas) entre los pares de vértices de G.

Antes de continuar estableceremos la siguiente notacién.

= Sea V el conjunto de vértices. Es habitual utilizar letras mintsculas para representar dichos vértices, es
decir V ={a,b,¢,...}. También se usan letras enumeradas con subindices, esto es V = {v1,v9,v3,... }.

= El conjunto de aristas E C V' x V, describe una relacion entre los vértices de G. Comunmente se
describe a E etiquetando cada arista, es decir, E = {e1, ea, €3, ... }, donde la arista e; := (u;, v;) o (vs, u;)
denota la conexién entre los vértices u; y v;. También usaremos la siguiente manera més simplificada
E= {ulvl, UgV2, . .. }

Definicién 1.3. Una coloracién (o coloracién propia) de vértices en grafos es una asignacién de colores a
los vértices de un grafo G. De tal manera que cualquiera vértices adyacentes tienen distintos colores. Es decir,
se busca una funcién

¢ :V — Colores ={1,2,...,k}

de tal forma que si uv € E entonces p(u) # ¢(v).

» Una coloracién usando exactamente s colores se llama s-coloracion.
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= Un grafo es k-coloreable si existe una s-coloraciéon de G para algin entero s < k.

Este resultado fue propuesto por primera vez en 1852 por Francis Guthrie. Una demostracién fue publicada
en 1879 por Kempe, pero 11 anos después, Heawood encontré un error en la prueba. Finalmente, en 1976, el
teorema fue demostrado por Appel y Haken, aunque de una manera inusual. Brevemente, la demostracion
de Appel y Haken consiste en mostrar que cada mapa plano contiene solo una de una lista de al menos
1,800 configuraciones, y que cada configuracién admite una reduccién, permitiendo una demostracién por
induccién. Aunque los nimeros involucrados son inusualmente grandes, la parte mas inusual de la prueba
es que se utilizaron aproximadamente 1,200 horas de tiempo de computadora para generar la lista de 1,800
configuraciones y verificar que las coloraciones de estas admitian la reduccién necesaria [6].

El mapa de la figura 1 también podria representar limites politicos en los que el area #b5 represente, por
ejemplo, un imperio. Cuando Heawood encontré tanto un error en el argumento de Kempe como descubrio
que no podia corregirlo, invent6 generalizaciones sobre la coloraciéon de mapas que, hasta cierto punto, pudo
resolver. Su investigacion dio origen al campo de la Teoria de Grafos Topologicos tal como se estudia hoy
en dia. Primero investigo el problema de la coloracién de imperios: si los mapas estan formados por paises
unidos en imperios, jcuantos colores se necesitan para colorear tales mapas, siempre que todos los paises en
un imperio reciban el mismo color y que los imperios con una frontera comun reciban colores diferentes?

Ringel sugirié una variacién del problema de la coloraciéon de imperios. Supongamos que la Luna fuera
colonizada y quisiéramos colorear un mapa de la tierra y la luna con el minimo niimero de colores de tal forma
que:

1. Las regiones adyacentes en la tierra o en la luna reciban colores diferentes, y

2. Un pais en la tierra y su colonia lunar reciban el mismo color.

A este problema se le conoce como el Problema de la Tierra-Luna. Este problema ha estado abierto
durante més de 20 anos.

Por dltimo se anade un teorema y un corolario que usaremos mas adelante:

Teorema 1.4. Sea G un grafo de orden n y tamario m, cuyo conjunto de vértices es V.= {v1,va,...,0n}.
Entonces se satisface que;

Z deg(v;) = 2m.
i=1

Corolario 1.5. Si G es un grafo planar de orden n > 3 y tamarno m, entonces se cumple la siguiente
desigualdad:
m < 3n — 6.

2 Complejidad computacional de problemas que involucran coloracién en grafos.

Comenzaremos con algunas definiciones antes de pasar a los resultados principales. Tanto en las matematicas
como en la teorfa de la informética se han estudiado diferentes aspectos de los problemas de decision. Algunos
de estos estudios se enfocan en determinar si existen algoritmos eficientes para resolverlos y en qué medida
algunos problemas de decisién son més dificiles de resolver que otros. Al analizar estos problemas, encontramos
que algunos presentan mayor complejidad que otros. Un problema de decisién importante dentro de la teoria
de grafos, que sera el principal objeto de estudio en esta seccién, es el llamado 3-coloracion de grafos planares.
Este problema consiste en:

Determinar si dado cualquier grafo planar no dirigido G, es posible colorear los vértices de G con tres colores,
digamos (Azul, Rojo y Verde) de tal manera que ningin par de vértices adyacentes tenga el mismo color.

El problema de determinar si es posible colorear un grafo planar con 3 colores se convierte en un problema de
decision con el siguiente formato:
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Problema: 3-coloracién de grafos planares G.
Entrada: Un grafo planar no dirigido. ;Es 3-coloreable?

Salida: Si o No.
Si, nos dice que el grafo es 3-coloreable; No, nos dice que no lo es.

La segunda pregunta que nos hacemos en este caso es:
¢ Qué tan dificil es este problema desdel punto de vista computacional?

Para la elaboracién de esta seccién se consultaron los libros [9] [1] [8] y los articulos [3] [11].

Definiciéon 2.1. Un problema de decisién es aquel que admite tinicamente dos posibles respuestas: “Si” o
“No”, para cualquier entrada.

Para resolver problemas de decisién y otros tipos de problemas matematicos, a menudo recurrimos a algoritmos.
Estos son fundamentales para la solucién de problemas tanto en computacién como en matematicas. Su
definicion es la siguiente:

Definicion 2.2. Un algoritmo es un conjunto finito de instrucciones matematicas bien definidas, que, cuando
se ejecutan correctamente, produce un resultado especifico a partir de una entrada dada.

Los algoritmos suelen ser vistos como una secuencia de instrucciones matematicas para resolver problemas.

Un problema de decisiéon que puede ser resuelto a través de un algoritmo en un tiempo finito se llama
decidible.

Entender los algoritmos es fundamental para resolver problemas computacionales. Sin embargo, no solo es
importante encontrar una solucién, sino también evaluar cuan eficiente es el algoritmo que utilizamos. Aqui es
donde entra en juego el concepto de complejidad de un algoritmo, que a continuaciéon definimos.

Definicion 2.3. La complejidad de un algoritmo se refiere al tiempo y la memoria requeridos para ejecutar
el algoritmo en funcién del tamafio de la entrada.

Para cuantificar la complejidad, utilizamos la notacién Big-0, denotada como O(g(n)), que describe el
crecimiento de una funciéon f en términos del tamano de la entrada. La comprension de la notacion Big-O es
esencial para evaluar y comparar algoritmos en términos de su eficiencia.

Definicién 2.4. (Big-O) Sean f, g : N — R dos funciones definidas en los niimeros enteros positivos, N.
Decimos que g es una cota superior asintdtica para f si existe un nimero real C' € R y un entero positivo
no € N tal que:

[f(n)] < Clg(n)| para todo niimero entero positivo n > ng.

En tal caso, se escribe
f=0(g) o feO(g).

La cota superior asintética g(n) se elige tipicamente de manera que sea lo més simple y pequena posible.
Decimos que f(n) tiene un crecimiento lineal, cuadratico, ciibico o polinomial en n si f(n) pertenece
a O(n), O(n?), O(n?) o O(n*) para algin k € N, respectivamente. Cuando hablamos de la eficiencia de un
algoritmo, nos referimos al tiempo que este tarda en ejecutarse en funcién del tamanio de la entrada. Los
algoritmos con tiempo de ejecucion polinomial, como la suma o multiplicacién de ntimeros, se consideran
eficientes. Por otro lado, si un algoritmo necesita iterar sobre cada instancia de un conjunto con 2™ elementos,
su complejidad es exponencial en n. Un problema se considera dificil si no existe un algoritmo eficiente, es
decir, de tiempo polinomial, que pueda resolverlo.

Existen clases distintas de problemas; aquellos cuyos algoritmos tienen tiempo de ejecucién polinomial, o no.
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3 Clases de problemas

A continuacién definimos las clases de problemas mas usados, para preparar esta secciéon nos basamos en las
notas del curso Design and Analysis of Algoritms del Profesor Erick Demaine [3].

Definicion 3.1.

= Un algoritmo es polinomial si para algin k, su tiempo de ejecucion sobre las entradas de tamano n
es O(n*). La clase de problemas tractables, denotada por P, comprende los problemas de decisién
que se pueden resolver mediante un algoritmo de tiempo polinomial. Estos problemas se consideran
eficientes.

= La clase de problemas NP, denominada tiempo polinomial no determinista es la clase de problemas
de decision en los que se permite adivinar y wverificar su solucién en tiempo polinomial. El hecho de
que una soluciéon pueda adivinarse a partir de muchas opciones polinomiales en tiempo constante se le
conoce como no-determinista.

Definicion 3.2. Dentro de la clase de problemas NP hay una clase de problemas denominados NP-completos,
que en términos generales son considerados dificiles de resolver y si existe un algoritmo que pueda resolver un
problema NP-completo en tiempo polinomial, entonces también puede resolver cualquier otro problema NP
en tiempo polinomial. En otras palabras, un problema X es NP-completo si X € NP-hard (véase definicién
abajo).

En la practica, verificar si una prueba es valida parece ser mas sencillo que encontrar la solucién a un problema.
Sin embargo, en el campo de la informética, persiste una pregunta fundamental sin resolver: ;Es la clase NP
estrictamente mas grande que la clase P? Esta pregunta es una de las incognitas mas importantes en la teoria
de algoritmos.

Definicién 3.3. Una reduccién del problema A al problema B en tiempo polinomial, denotada por A <, B,
es una transformacién tal que existe un algoritmo que convierte las entradas del problema A en entradas
equivalentes del problema B en tiempo polinomial. Equivalente significa que para cualquier entrada, el
problema A y el problema B producen la misma respuesta (si o no). Sea A <,, B:

s Si A€ NP — hard, entonces B € NP — hard.

= Si B € P, entonces A € P.

= Si B€ NP, entonces A € NP.
Definicién 3.4. Un problema X es NP-hard o NP-duro si cada problema Y € NP se reduce a X. Es
decir, un problema es NP-hard si es al menos tan dificil como todos los problemas en NP.
Con lo anterior podemos definir formalmente los problemas NP-completos.
Definiciéon 3.5. Un problema X es NP-completo si X € NP y X es N P-hard.
Un ejemplo muy famoso de problemas N P-completos es el problema denominado 3SAT, con el fin de hacer este
trabajo auto contenido y definir formalmente un problema 3SAT introduciremos las siguientes definiciones.

Definicién 3.6. Una fé6rmula booleana es una expresién formada con las variables uy, . .., u, con u; € {0,1}
para ¢ € {1,2,...,n}, junto con los operadores légicos y (A), no (—) y o (V). Sea ¢ una férmula booleana y
z € {0,1}™, entonces ¢(z) denota el valor de ¢ cuando a las variables de ¢ se les asignan los valores z. Se dice
que una férmula ¢ satisface (o tiene solucién) si existe alguna asignacién z tal que ¢(z) sea verdadera.

Una férmula booleana estd en forma CNF (Forma Normal Conjuntiva) si es una conjuncién (y) de disyunciones
(o) de variables o sus negaciones. Es decir, una férmula CNF tiene la forma

AV

i J
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donde cada v;; es un literal que puede ser la variable uj; o su negacién —uy. Los términos v;; se llaman
literales y las expresiones (\/ v;;) se llaman clausulas. Un kCNF es una férmula CNF en la cual todas las
clausulas contienen a lo sumo k literales.

Con esta definicién podemos dar paso a una definicién formal de un tipo de férmula booleana denominada
3SAT, para después demostrar que el problema de decidir si una férmula booleana que estd en 3CNF es o
no valida se reduce a un problema de 3-coloracién en grafos en tiempo polinomial y viceversa. Asi que son
equivalentemente dificiles y concluiremos que el problema de 3-coloracién en grafos es NP-completo pues
3SAT Io es.

Definicién 3.7. 3SAT: El problema de decision 3SAT se puede plantear como sigue. Dada una férmula
booleana de la forma:
(x1VazVag) AN(TzVaesVar)A...,

(Existe una asignacién de variables verdadero (1) y falso (0), tal que toda la féormula evalie a verdadero (1)?

Fue probado que el problema 3SAT resulta ser NP-completo por Cook en 1971 [1]. A continuacién, enunciamos
el teorema y definimos formalmente el problema:

Teorema 3.8. (Teorema de Cook-Levin [1]) Sea SAT el lenguaje de todas las férmulas CNF que tienen
solucion y 3SAT el lenguaje de todas las formulas SCNF que tienen solucion. Entonces:

1. SAT es NP-completo.
2. 3SAT es NP-completo.

En el problema de decision de 3-coloracion, se nos da un grafo G y nos preguntamos si existe una forma de
colorear los vértices de dicho grafo utilizando tres colores, a saber: rojo, verde o amarillo, de tal manera que
ningin par de vértices adyacentes comparta el mismo color.

El objetivo de esta seccion es demostrar una reduccién en tiempo polinomial del problema 3SAT al problema
de 3-coloracién. Es decir, demostraremos el siguiente teorema:

Teorema 3.9. 35AT <, 3— Coloracion.

Antes de demostrar este teorema, esbozaremos la estrategia de la prueba. Dada una entrada del problema
3SAT (una férmula booleana), debemos construir un grafo que serd 3-coloreable si y solamente si la férmula
booleana tiene solucién. La idea de la siguiente prueba fue tomada de [11].

Demostracion. La demostracién se ejecutard en varios pasos.

= Paso 1: Comenzamos construyendo un grafo que contiene 3 vértices etiquetados como T, F, y S,
conectados formando un tridngulo. Coloreamos estos vértices con tres colores diferentes. Sin pérdida de
generalidad, podemos colorearlos como se muestra en la figura 2:

En esta construccion, el color verde indica los valores verdaderos, el color rojo indica los valores falsos y
el color de S no representa ningin valor.

= Paso 2: En nuestra férmula, tenemos variables y negaciones de variables, conocidas como literales.
Debemos asignar valores a los literales, por lo que basta asignar valores a su variable correspondiente.
Para asegurar esto, hacemos lo siguiente:

Para cada varibale x; y su negacién Z;, creamos dos vértices en nuestro grafo y conectamos estos vértices
al vértice S, como se muestra en la figura 3.

Esto asegura que los literales x; y T; no reciban el mismo color que el vértice S, ya que estan conectadas
a Sy, por lo tanto, deben ser coloreadas de rojo o verde. Para garantizar que x; y T; no reciban el
mismo color (es decir, que si x; es verdadero, entonces T; sea falso, y viceversa), conectamos el vértice
x; con el vértice T;, como se muestra en la figura 3.

De esta manera, si coloreamos el grafo de una forma valida, obtendremos valores de verdad para las
variables y sus negaciones que son consistentes.
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T

Figura 2: Primer paso

@

Figura 3: Segundo paso

= Paso 3: Finalmente, necesitamos representar cada clausula de la férmula booleana a través de un grafo.
Para ello, representaremos el operador booleano O R mediante una construccion que llamaremos “gadget”
(véase figura 4). Este gadget es 3-coloreable si y solo si al menos una de las literales en la cldusula es
asignada o coloreada con T' (verdadero), como veremos a continuacién.

Literales

Figura 4: Tercer paso

En el gadget de la figura 4, si todas las literales se colorean como Falso (rojo), el vértice ns debe ser
coloreado de azul, ya que esté conectado a T' (verde) y a xj (rojo). A continuacion, el vértice ny debe
ser coloreado de rojo, ya que estd conectado a T' (verde) y a ns (azul), como se muestra en la figura 5:

Esto implica que ni el vértice ns, ni nq, ni ny pueden ser coloreados de rojo. Por lo tanto, solo pueden
tener los colores verde o azul. Sin embargo, al tratarse de tres vértices y solo dos colores disponibles,
necesariamente habra un par de vértices que compartan el mismo color. Como estos tres vértices estan
conectados entre si, se produciria una contradiccién, ya que dos vértices conectados tendrian el mismo
color. De este modo, si las tres literales son falsas, es imposible colorear el gadget.

= Paso 4: El paso final consiste en intersectar los gadgets, es decir, se crea un gadget por cada cldusula y
se busca empatar esos gadgets. Aunque el resultado es grande, estd bien estructurado, como se muestra
en la figura 6. De este modo, el grafo resultante es 3-coloreable si y solo si la férmula booleana se
satisface.
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>

Literales

Figura 5: Coloracién del tercer paso

En el caso de que la férmula booleana representada por la figura no se satisfaga, es decir, si z1, x2, y T3
son coloreadas de rojo, entonces al aplicar el proceso descrito en el paso 3, se llega a la conclusion de
que es imposible colorear el grafo.

Figura 6: Reduccién completa de la férmula 3SAT
(x1 Va2 VT3) A (22 V 23 V 24) & una 3-coloracién

= Paso 5: Para demostrar que esta reduccion se realiza en tiempo polinomial, supongamos que la férmula
tiene n variables y m clausulas. Entonces, el nimero de vértices y aristas se calcula de la siguiente
manera:

Vértices:

o 3 vértices para el tridngulo formado por los vértices T', F'y S (figura 2).
o 2 vértices por cada variable: se requieren 2n vértices extra (figura 3).

o 5 vértices por cada cldusula: se requieren 5m vértices extra (figura 4).

Aristas:
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« 3 aristas para el tridngulo formado por los vértices T, F' y S (figura 2).
o Aristas entre pares (z;,7;) opuestos a las literales: n aristas (figura 3).
 Aristas de las literales al vértice S: Se tienen 2n aristas (figura 3).
« 10 aristas por cldusula (gadget): Se tienen 10m aristas (figura 4).
De este modo, el grafo generado tiene 2n + 5m + 3 vértices y 3n + 10m + 3 aristas. La construccién

del grafo se realiza en un nimero de pasos que es polinomial respecto a n y m, garantizando asi que la
reduccién se lleva a cabo en tiempo polinomial.

Hasta ahora hemos probado que un problema 3SAT se reduce a un problema de 3-coloracion en grafos en
general. Como 3SAT es un problema NP-completo por la reduccion la 3-coloracién en grafos también lo es.

O

Otra forma de demostrar que los problemas de 3-coloracién en grafos son NP es modelar este problema como
un problema de satisfaccién de restricciones, dado que estos tltimos son NP. En general, aunque en 2017 se
demostr6 que, en el caso de que P # NP [12], los problemas de satisfaccién de restricciones pertenecen a la
clase de problemas en los que se satisface la dicotomia; es decir, son P o son NP.

4 Problemas de Satisfaccion de Restricciones.

Los Problemas de Satisfaccion de Restricciones (CSP, por sus siglas en inglés) constituyen un drea fundamental
en la teoria de la computacién. Estos se definen como conjuntos de objetos que deben satisfacer una serie de
restricciones o limitaciones.

A continuacién, los definiremos formalmente:
Definicién 4.1. Un Problema de Satisfaccion de Restricciones CSP se define como una tripleta
(X, D, C), donde:

» X ={x1,29,23,...} es un conjunto de variables, que puede o no ser infinito.

» D =1{dy,ds,ds,...} es el conjunto de valores que pueden tomar las variables o dominio.

» C={c1,c2,...,c} es un conjunto finito de restricciones, donde cada restriccién ¢; = (¢;, R;) para
i€ {1,2,...,k} consiste de una n;-tupla de variables t; = (z;1, Z;2,...,Zin,) y una relacién n;-aria
R; sobre D.

Definicion 4.2. Una evaluacion de las variables es una funcién

p: X = D.
Decimos que una evaluacién ¢ satisface una restriccién ¢; = (t;, R;) con t; = (241, %42, ..., Tin,) si la tupla
de valores (p(zi1), o(i2), - .., @(xin,)) pertenece a la relacién R;.

Una solucion del CSP es una evaluacién que satisface todas las restricciones del problema.

Muchos problemas practicos pueden modelarse como problemas de satisfaccion de restricciones. Un ejemplo
clésico de esto es el problema de satisfacibilidad booleana (SAT) visto en la seccién anterior. En esencia, este
problema implica encontrar asignaciones de valores a variables que hagan que una férmula 1égica proposicional
sea verdadera. A continuacién mostraremos como un problema SAT se modela como un problema CSP. El
siguiente ejemplo se construyé tomando como base el ejemplo del libro [8].
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Ejemplo 4.3. El problema de satisfacibilidad booleana (SAT) consiste en determinar si existen valores
de ceros y unos para las variables de una férmula logica proposicional como la siguiente, que hagan verdadera
la férmula. Consideremos la siguiente férmula:

t(x1, 29, 23, 24) :=(x1 Va2 VaszVay) A(T1V Tz Vas)A
(ZTzVTzVa) A (T3 VT2V ag) A(TLVT3).

El problema consiste en asignar valores de 0 o 1 para aj, as, as, as de tal manera que al evaluar la férmula ¢,
esta resulte verdadera, es decir, t(a1, as, as, as) = 1. Este tipo de problemas se puede expresar como un CSP,
en especifico, de la siguiente manera:

= Sea V = {1‘1,$2,$37534}-

» Sea D = {0,1}.

s Sea C el conjunto de restricciones definido por:

C = {c1,c2,¢3,¢4,05)

donde:
o ¢ = ((z1,22,73,74), D*\ {(0,0,0,0)}).
o o= ((x1,22,23), D3\ {(1,1,0)}).
o c3:= ((w3,24,71), D3\ {(1,1,0)}).
o cq:=((w3,22,74), D3\ {(1,1,0)}).
o c5 = ((z1,23), D\ {(1,)}).

Por lo tanto, la solucién del ejemplo anterior consiste en encontrar las asignaciones de valores ¢ : X — D que
satisfagan todas las restricciones del problema. En este caso, las soluciones son las siguientes:

Ty T2 T3 T4

$1
P2
¥3
P4
¥5
Y6

—__0 o oo
OO == OO
OO OO O
— O = O O

Los CSP abarcan una amplia gama de problemas, desdel famoso Problema de las Ocho Reinas hasta el
desafiante Teorema de los Cuatro Colores en la coloracién de mapas. Numerosos juegos y rompecabezas, como
por ejemplo el Sudoku, pueden modelarse como problemas de satisfaccién de restricciones.

A continuacién, formularemos el problema de coloracién de mapas como un problema CSP, donde la tarea
consiste en determinar si un mapa dado puede ser coloreado con tres colores distintos de manera que ningin
par de regiones adyacentes tenga el mismo color.

Definicién 4.4. El Problema de Coloracién de un grafo (véase teorema 1.3). Sea un grafo G = (V, E)
donde V' = {v1,va,...,v,} es el conjunto de vértices y E = {e1,ea,...,en} es el conjunto de aristas. El
problema consiste en determinar si es posible colorear los vértices de G con k colores de tal manera que
vértices adyacentes tengan colores diferentes.

El problema anterior lo formularemos como un CSP, donde:
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» X ={v1,v2,...,0,} es el conjunto de vértices de G.

» D={dy,ds,...,d} es el conjunto de colores que pueden asignarse a los vértices.

» C = {c1,¢2,...,¢m} es el conjunto de restricciones, donde cada restriccién ¢; = (e;, #p) para i €
{1,2,...,m}, con e; = (u;, v;) representando las aristas de G y #p la relacién de desigualdad sobre D,

definida como:
#p={(di,d;) € D*| d; # d;}.

Por lo tanto, una solucién al problema de colorear el mapa consiste en encontrar una funcién
p: X —D
que asigne un color a cada vértice en v; € X con i € {1,2,...,n} tal que
para todo e; = (u;,v;) € F entonces (p(u;), o(v;)) €#
Lo anterior equivale a ver si

para todo e; = (u;,v;) € E entonces p(u;) # ©(v;)

Finalizaremos esta seccién modelando un problema de 3-coloracién como un problema 3SAT.

Ejemplo 4.5. Modelando un problema de 3-coloracién de grafos como un problema 3SAT.
Sea un grafo G = (V, F). Formularemos este problema como un 3SAT de la siguiente manera:

» Las variables del conjunto u € {uq 4, u2,...,un} con i € {1,2,3} representan los colores asignados a
los vértices en G. Hay 3 variables por cada vértice en GG, una por cada color posible.

» El dominio D = {0, 1} indica los valores que puede tomar cada variable u, donde 1 significa que el color
es asignado y 0 que no lo es.

» Para cada vértice v; € V con j € {1,2,...,n}, asignamos las siguientes restricciones:

o Cada vértice debe ser coloreado con al menos un color, es decir, se debe satisfacer la siguiente
férmulas:
Uj1 Vuje Vs
para esta restriccion se necesita una sola clausula por cada vértice, es decir n cldusulas en total
para el grafo.

e En nuestro problema de coloraciéon no se pueden asignar dos colores al mismo tiempo al mismo
vértice y esto se logra con la siguiente expresion légica:

(@1 Va2) A (wja vV ags) A (U2 Vg s)

para esta restriccién se necesitan 3 x n clausulas.

o Cada par de vértices adyacentes son de diferente color. Para todo e; = (v;,vx) € E se tiene la
restriccion:
(@1 VD) A (U2 V k2) A (@53 V )

para esta restriccién se necesitan 3 x m clausulas

Asi, el problema de 3-coloracién se reduce a encontrar una asignacién a las variables z € {0,1}3" que haga
que la férmula booleana descrita por la intercesién de todas las clausulas anteriores sea verdadera.
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Con este ejemplo, observamos que para cualquier grafo G = (V, E) se puede escribir como un problema 3SAT
utilizando un total de n + 3n + 3m = 4n + 3m restricciones. De este modo hay una reduccién de un problema
de coloracién en grafos a un problema 3SAT en tiempo polinomial.

Para demostrar que el problema de decidir si un grafo planar se puede colorear con 3 colores es NP-completo,
se realiza una reduccién en tiempo polinomial desdel problema de colorear cualquier grafo con 3 colores. Es
decir, se demuestra el siguiente teorema:

Teorema 4.6. El problema de decidir si un grafo es 3-coloreable se reduce en tiempo polinomial al problema
de decidir si un grafo planar es 3-coloreable.

Grafo 3-coloreable <, Grafo planar 3-coloreable

La estrategia consiste en comenzar con un grafo no planar que tenga cruces, y reemplazar cada cruce por un
gadget planar: un subgrafo de 11 vértices que puede ser coloreado con 3 colores. Este proceso se realiza para
cada cruce, transformando asi el grafo original en un grafo planar que es 3-coloreable si, y solo si, el grafo
original no planar también lo es. El lector interesado en los detalles de la reduccién puede consultar [5].

A partir del teorema anterior y de la reduccién del problema 3-SAT al problema de 3-coloracién, obtenemos
que:

3-SAT <, Grafo planar 3-coloreable.

Y, dado que 3-SAT es NP-completo, concluimos que el problema de 3-coloracién en grafos planares también
es NP-completo.

5 El Problema de la Tierra-Luna (Earth-Moon Problem).

El problema de la Tierra-Luna es un problema que permanece abierto dentro del &mbito de la coloracion
de grafos, planteado por Gerhard Ringel en 1959 [6]. Como vimos en la introduccién este problema es una
extension del problema de la coloracién de mapas planos, cuya solucién se obtiene a través del Teorema de los
Cuatro Colores (véase teorema 1.1).

De manera intuitiva, el problema puede enunciarse de la siguiente formas:

¢ Cudntos colores se necesitan para colorear los mapas politicos de la tierra y la luna en un futuro hipotético,
donde cada pais de la tierra tiene una colonia en la luna que debe recibir el mismo color?

En la Tierra Enla Luna

Belgica

Francia

Figura 7: Territorio de paises en tierra y luna.

En la figura 7 se muestra un ejemplo de una coloracién para la tierra y la luna. Nétese que cada pais debe ser
coloreado con el mismo color tanto en la tierra como en la luna, aunque la disposicién geogréfica es diferente
en ambos cuerpos celestes.
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La pregunta anterior se puede formular de la siguiente manera: ; Cuél es el nimero minimo de colores necesarios
para colorear un conjunto de paises, de tal forma que no haya dos paises que compartan una frontera comin y
estén coloreados con el mismo color, bajo la condicién de que cada pais consiste en una regién en la tierra y
una regién en la luna?

En términos de teoria de grafos, esta pregunta se puede reformular como sigue:

(Cudl es el ntimero cromdtico méximo de un grafo G que es la unién de dos grafos planares (sobre el mismo
conjunto de vértices)?

Nos gustaria establecer algunas cotas sobre el niimero de colores necesarios. Comenzaremos con un ejemplo
dado por Thom Sulanke en 1974, que refuta la conjetura de Ringel, la cual postulaba que 8 colores serian
suficientes para resolver la pregunta.

Antes de continuar, es importante seflalar que para la preparacién de esta seccién se consultaron los articulos
[10], [6] ¥ [4]. La mayoria de las demostraciones aqui expuestas se completaron o se hizo una demostracién
alternativa.

b

Ejemplo 5.1. Supongamos que tenemos la coloracion del mapa en “la tierra” donde cada letra

{A,B,C,D,E,F,P,Q,R,S, T} representa un pais diferente.

G@D

Figura 8: Coloracién en “la tierra”.

El grafo correspondiente G (figura 9) para este mapa tiene 11 vértices (uno por cada pais) y 26 aristas (una
por cada colindancia), cumpliendo la desigualdad de Euler para grafos planos, m = 26 < 3 x 11 — 6, donde m
es el nimero de aristas y 11 es el nimero de vértices. Asi,

Gl = (Vlu El)

queda definido por
Vl = {A,B,CaD7E7FaP,Q7RaS3T}

AT, AB, AP, BC, BD, BF, BT, BP, BS, BQ,
E, ={ CQ,CS,CR,DP,DQ,DR,DE,DF,ER, EF, FT,
FS,FR,PT,QR, RS

El grafo G es isomorfo al grafo de la figura 10, que a simple vista no parece ser plano; sin embargo, como se
observa en la figura 9, si posee una representacién plana. Mas adelante usaremos este grafo para simplicidad
visual.

A continuacidén, analizamos el mapa en la luna. Supongamos que los 11 paises del mapa terrestre se mantienen
en la luna, pero en este caso, cada pais esta dividido en regiones diferentes a las del mapa terrestre. Esta
variacion en la division regional altera las colindancias entre las regiones en la luna, en comparacién con las
del mapa de la tierra.

Denotemos por Gs el grafo que representa el mapa lunar (figura 12). En G5 las aristas indican las nuevas
colindancias entre las regiones lunares.
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Figura 10: Grafo de mapa en “la tierra”.

El grafo G5 correspondiente al mapa lunar tiene 11 vértices (uno por cada regién) y 24 aristas. Asi, Go = (Va, E»)
queda definido por
.V2 = {A7B,CﬂD’E7F’P7Q7R7S7T}

AC, AQ, AF, AD, AS, AE, AR,
BR,BE,CF,CD,CT,CE,CP,
DS, DT, ET,ES,EQ, EP,
FQ,FP,PQ,ST

Ey, =

Reordenando los vértices alfabéticamente para facilitar el analisis, obtenemos el grafo de la figura 13.

Para garantizar que las colindancias sean consistentes entre los dos mapas, debemos considerar la unién de los
grafos G1 y G2. En dondel conjunto de vértices {A, B,C, D, E, F, P,Q, R, S, T} es el mismo, pero el de aristas
serd la union dellos. Al grafo resultante, que representa la combinacion de las regiones de ambos mapas, le
llamamos G5 = (V3, FE3) donde:

V3:V1 :‘/2:{A7B,C,D,E,F,P7Q,R,S,T}

AC,AQ, AF,AD, AS, AE, AR, BR, BE, CF,
CD,CT,CE,CP,DS,DT,ET,ES,EQ, EP,
Es=E,UE, ={ FQ,FP,PQ,ST, AT, AB, AP, BD, BF, BT,
BP,BS,BQ,CQ,CS,CR,DP,DQ, DR, DE,
ER,EF,FT,FS,FR, PT,QR, RS
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Figura 11: Coloracién en “la luna”.

Figura 12: Grafo de mapa en “la luna”. Gs

El grafo final G35 combina las coloraciones de las regiones de la Tierra y la Luna, respetando las adyacencias
especificadas en ambos mapas. La pregunta clave es: jcudl es el nimero minimo de colores necesarios para
colorear este grafo de manera que no haya dos regiones adyacentes con el mismo color?

En este caso, hemos determinado que se requieren al menos 9 colores, y este nimero es 6ptimo. Esto se debe a
que el subgrafo formado por los vértices A a F' y las aristas que los conectan es un grafo completo K¢, donde
cada vértice estd conectado con todos los demas. Por lo tanto, se necesitan al menos 6 colores para colorear
K.

Por otro lado, el subgrafo formado por los vértices P a T es un ciclo C5, que también requiere colores distintos
de los usados en Kg. Para colorear un ciclo Cs, se necesitan al menos 3 colores adicionales. Dado que G3 es la
union de Kg y Cs, la cota minima de colores necesarios es 9. Ademads, este niimero es suficiente, como se ha
demostrado en el ejemplo, donde se logra una coloracion correcta con 9 colores.

Como se puede observar, el Problema de la Tierra-Luna se puede formular como un grafo G = (V, E) cuyo
conjunto de vértices es el mismo, pero cuyo conjunto de aristas se puede dividir para formar dos grafos
planares G1 y G2. A la operacién inversa, es decir, construir un grafo de Tierra-Luna la llamaremos union.

Definicién 5.2. Sean G; = (V, E) y G2 = (V, E3) dos grafos planos definidos sobre el mismo conjunto de
vértices V, definimos la unién de estos grafos como el grafo G = (V, E), donde E = E; U E5. Es decir, el
grafo unién mantiene el mismo conjunto de vértices y su conjunto de aristas corresponde a la unién de las
aristas de G1 y Ga.

Por el corolario 1.5, sabemos que un grafo planar con n > 3 vértices tiene a lo sumo m < 3n — 6 aristas. De
este modo, el Problema de la Tierra-Luna tendra como maximo 3n — 6 aristas en un grafo plano G; y 3n — 6
aristas en el grafo plano Gs.
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Figura 14: Grafo Tierra-Luna. G3

Por lo tanto, tenemos el siguiente corolario.

Corolario 5.3. Si G es un grafo con n > 3 vértices que es la union de dos grafos planares, entonces G tendrd
como mdzimo |E| < 2(3n —6) = 6n — 12 aristas.

Corolario 5.4. Si G es un grafo que es la union de dos grafos planares, existe al menos un vértice con grado
no mayor a 11.

Demostracion. Si n < 2 el resultado es trivial, ya que todos los vértices tendran grado no mayor a 11.
Supongamos que n > 3.

El resultado se obtendra por contradiccién. Supongamos, que tenemos un grafo G = (V, E) unién de dos
planares de orden n y tamafio m en el cual todos sus vértices tienen un grado mayor o igual a 12.
Usando el corolario anterior (5.3) y el teorema 1.4, podemos afirmar que:

> deg(vi) = 2m < 2(6n — 12) = 12n — 24.
i=1

Sin embargo, bajo nuestra hipdtesis de que todos los vértices tienen un grado mayor o igual a 12, y aplicando
nuevamente el teorema 1.4, obtenemos:

12n < Zdeg(vi) = 2m.

i=1
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Combinando las dos desigualdades anteriores obtenemos:
12n < 2m < 12n — 24.

Esta tltima desigualdad es una contradiccién. Por lo tanto, llegamos a la conclusién de que debe existir al
menos un vértice en G con un grado a lo mas de 11. O

Teorema 5.5. [6] El grafo G del Problema de la Tierra-Luna es 12-coloreable.

Demostracion. Probaremos este teorema usando induccién matematica sobre el orden de G. Sea n el orden
de G.

Base de induccion: Supongamos que n < 12. Si G tiene n < 12 vértices, entonces existe una 12-coloracién
para G, ya que, basta con asignar un color distinto a cada vértice, y por construcciéon, no habra dos vértices
adyacentes con el mismo color. Por lo tanto, el resultado se cumple para n < 12.

Hipotesis de induccion: Supongamos que todo grafo planar de orden n es 12-coloreable.

Paso de induccion: Por demostrar que cualquier grafo G = (V, E) de orden n + 1 es 12-coloreable. Por el
colorario 5.4 sabemos que en cualquier grafo que es la unién de dos grafos planares existe al menos un vértice
v con deg(v) < 11. Sea G’ = (V', E) el subgrafo de G, donde V' =V \ {v} y E’ incluye todas las aristas que
no son incidentes con v. En otras palabras, G’ es el grafo resultante de “eliminar” v y todas las aristas que lo
conectan. Entonces, el orden de G’ es n, y por la hipdtesis de induccién, obtenemos que G’ es 12-coloreable.
De lo anterior se sigue que existe una s-coloracién para G’ con s < 12. Utilizamos esta 12-coloracién para
G con los colores {c1,ca,...,c12}, v solo falta asignar un color a v. Sabemos que v tiene a lo més 11 aristas
incidentes a él. Supongamos sin pérdida de generalidad que estas aristas estan conectadas a lo mas a 11
vértices diferentes {v1,va,...,v11}. Asignamos el color no utilizado para {vy,va,...,v11} a v. De esta manera,
se conservan las caracteristicas de la 12-coloracién en G, y G de orden n + 1 es 12-coloreable. O

Hasta aqui, el ejemplo 14 demuestra que se requieren al menos 9 colores para resolver el Problema de la
Tierra-Luna. Por otro lado, el teorema 5.5 establece que es posible utilizar hasta 12 colores. Esto plantea la
pregunta: jes factible lograr una coloraciéon con menos de 12 colores? Por lo que sabriamos que la respuesta al
minimo nimero de colores necesarios se encuentra en el conjunto:

{9,10,11,12}

Dejando abiertas las posibilidades de exploracién en torno a la existencia de configuraciones que requieran 10
u 11 colores. Esta incertidumbre resalta la complejidad del problema y nos surge la pregunta de cual es la
complejidad computacional del problema de n-coloracién de la Tierra-Luna con 3 <n < 11.

Para concluir esta seccién, modelaremos el Problema de la Tierra-Luna mostrado en la figura 7 como un
Problema de Satisfaccién de Restricciones (CSP).

Con el objetivo de analizar su complejidad computacional, en la siguiente seccién presentaremos la modelacién
del Problema de la Tierra-Luna como un CSP, con el proposito de demostrar que es un problema de complejidad
NP-hard.

6 Problema de la Tierra-Luna a través de los CSP.

Empezamos esta seccién construyendo el siguiente ejemplo. Tenemos una porcién de paises europeos: Alemania,
Austria, Bélgica, Francia, Paises Bajos, Luxemburgo, Polonia, Reptblica Checa y Suiza (véase figura 7). El
problema consiste en colorear los paises utilizando el minimo nimero de colores de tal manera que no haya
dos paises colindantes que compartan el mismo color.

Primero, describiremos el mapa como dos grafos, donde cada vértice representara un pais y una arista unira
dos paises si estos colindan, i.e. Sea Gy = (V, E) el grafo en la tierra donde:
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» V_{Al, Au, Be, Fr, Pb, Lu, Po, Re, Su} representa los paises de Alemania, Austria, Bélgica, Francia,
Pblanda, Luxemburgo, Polonia, Republica Checa y Suiza respectivamente.

= F; representa colindancias entre los paises en la tierra: Fy = {AlPo, AlRe, AlAu, AlSu, AlFr, AlLu,
AlBe, AlPb, AuRe, AuSu, BePb, BeLu, BeFr, FrLu, FrSu, PoRe}
Ademéds, sea G = (V, E) el grafo en la luna donde:
» V_{Al, Au, Be, Fr, Pb, Lu, Po, Re, Su} representa los paises de Alemania, Austria, Bélgica, Francia,
Paises Bajos, Luxemburgo, Polonia, Republica Checa y Suiza respectivamente.
= F) representa colindancias entre los paises en la luna: E; = {AlPb, AlLu, AlAu, AuLu, AuSu, BeF'r,
BeLu, BePb, FrLu, FrRe, PbLu, LuPo, LuRe, LuSu, PoRe, PoSu}

Por lo tanto, los grafos planares que representa los mapas en la tierra y en la luna estan representados en la
figura 15. Una vez dada la representacion grafica, formularemos este problema como una instancia de CSP. El
Problema Tierra-Luna de arriba se puede plantear como un CSP de la siguiente manera:

Grafo en la tierra Grafo en la luna

Figura 15: Representacién grafica del Problema de la Tierra-Luna.

» Sea X = {Al, Au, Be, Fr, Pb, Lu, Po, Re, Su} nuestro conjunto de variables, representando cada pafis.

» Sea D = {V, Az, R, Am} el dominio de los valores de las variables, que representan los colores (por
ejemplo, Verde, Azul, Rosa y Amarillo) que se pueden asignar a los vértices.

= Sea C' el conjunto de restricciones sobre las variables. Definimos las restricciones de colindancia de la
siguiente manera:

o Tierra: Los paises adyacentes deben tener colores diferentes. Las colindancias son:

AlPo, £), (AlRe, #), (AlAu, 2,
AlSu, #), (AlFr,#), (AlLu, #),
AlBe, #), (AlPb,#), (AuRe, #),
AuSu, #), (BePb,#), (BeLu, #),
BeFr,#),(FrLu,#), (FrSu,#),
PoRe, #)

H.J
o~~~ o~~~
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e Luna: Similarmente, las colindancias para el grafo en la luna son:

AlPb, #), (AlLu, #), (AlAu, #),
AuLu, #), (AuSu, #), (BeFr, #),
BeLu,#), (BePb, #), (FrLu, #),
FrRe,#),(PbLu, #), (LuPo, #),

i ( 75 7#)

LuRe, #), (LuSu,#), (PoRe,
PoSu, #

’

N}
o~~~ o~~~

En este contexto, la relacién binaria # establece que los colores asignados a paises adyacentes deben ser
distintos tanto en la tierra como en la luna.

Por lo tanto, una solucién al problema de colorear el mapa en la tierra consiste en encontrar una funcién
w: X —D
que asigne un color a cada vértice en v; € X con i € {1,2,3,...,9} tal que
para todo (v;,v;) € Ey entonces (¢(v;), p(v;)) €#
Esto tltimo es equivalente a decir que ¢(v;) # o(v;).

De manera similar, para el problema de la Luna, buscamos la misma funcién
w: X —D
que asigne un color a cada vértice en v; € X tal que

para todo (v;,vj) € E; entonces (@(v;), o(v})) €7
Ahora, dado que buscamos satisfacer simultaneamente las restricciones tanto en la tierra como en la luna,
el CSP que representa la uniéon de estas condiciones implica que X es el conjunto de variables definido

anteriormente, y D representa los mismos colores. El conjunto de restricciones es la uniéon de las restricciones
de colindancia para ambos contextos:

» Tierra-Luna: Los paises adyacentes deben tener colores diferentes, tanto en la tierra como en la luna.
La unién de las colindancias es:

(AlPo,#), (AlRe, #), (AlAu, #),
(AlSu, #), (AlFr,#), (AlLu, #),
(AlBe, #), (AlPb, #), (AuRe, #),
Cu =14 (AuSu,£),(BePb, £), (BeLu, ),
(BeFr,#), (FrLu,#), (FrSu,#),
(PoRe,#), (PbLu,#), (LuPo, #),
(LuRe, #), (LuSu, #), (PoSu, #)

Por lo tanto, una solucién al problema de colorear el mapa en la Tierra-Luna consiste en encontrar una funcién
¢ : X — D que asigne un color a cada vértice v; € X con i € {1,2,3,...,9}, de manera que

para todo (v;,v;) € (E; U Ej) entonces (¢(v;), o(v;)) €#

Esto es equivalente a afirmar que ¢(v;) # ¢(v;).

Una posible soluciéon para el Problema de la Tierra-Luna es:

@(Al) = Am, @(Au) = Az, ¢(Be) =V,
e(Fr) = Az, @(Pb) = Az, ¢(Lu) =R,
@(Po) = Az, @(Re)=V, ¢(Su)=

T



Boletin Sociedad Mexicana de Computacién Cientifica y sus Aplicaciones 49

Grafo en la tierra Grafo en la luna

Figura 16: Una solucién grafica del Problema de la Tierra-Luna.

Grafo de la Tierra-Luna

Figura 17: Grafo combinado de la Tierra-Luna.

Estas soluciones se ilustran en la figura 16, que corresponde a cada uno de los mapas.

Finalmente, en la figura 16 se presenta los grafos que modelan la tierra y la luna, asociados a esta solucion.
Adicionalmente, en la figura 17 se representa el grafo que es la unién de estos dos grafos planares, y serfa el
que se modelé al final.

Hasta el momento, hemos demostrado que el problema de coloraciéon del modelo Tierra-Luna presenta desafios
significativos, con un minimo de 9 colores necesarios y la posibilidad de utilizar hasta 12. Este analisis nos
lleva a considerar la complejidad intrinseca de la coloracién de grafos y abre la puerta a la exploraciéon de la
complejidad computacional para la n-coloracién del Problema de la Tierra-Luna con 3 < n < 8. Debra Boutin,
Ellen Gethner y Thom Sulanke en [2] proporcionaron un catilogo de 40 nuevos ejemplos (configuraciones)
del Problema de la Tierra-Luna que pueden ser coloreados con 9 colores. Ademads, presentan una nueva
metodologia para construir configuraciones adicionales, lo que permite crear una familia infinita de ejemplos
de problemas de la Tierra-Luna que son 9-coloreables.

Debido a que el Problema de la Tierra-Luna puede ser modelado como un problema de satisfaccion de
restricciones (CSP), sabemos que este problema tiene una complejidad en NP-hard. Sin embargo, para n > 12,
el teorema 5.5 establece que el problema de decidir si un grafo que representa un problema de la Tierra-Luna
es n-coloreable siempre tiene una soluciéon afirmativa. Esto implica que dicho problema puede resolverse en
tiempo polinomial. El problema de la 3-coloracién en la Tierra es NP-completo, ya que se redujo del problema
3-SAT a la 3-coloracién de grafos. Por lo tanto, el Problema de la Tierra-Luna con 3 colores también sera
NP-completo, dado que en la tierra y la luna lo es.

Para concluir esta seccién, construiremos una reduccién en tiempo polinomial del problema 3SAT al problema
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de 3-coloracién de la Tierra-Luna. De esta manera, probaremos de forma independiente, y sin hacer uso del
hecho de que el problema de 3-coloracién en la Tierra es NP-completo, que el problema de 3-coloracién de la
Tierra-Luna también es NP-completo.

Teorema 6.1. 3SAT <, Problema de la Tierra — Luna.

Antes de demostrar este teorema, esbozaremos la estrategia de la prueba. Dada una entrada del problema
3SAT (una férmula booleana), debemos construir un mapa en la tierra y un mapa en la luna que serd
3-coloreable si y solamente si la formula booleana tiene solucién.

Demostracion. La demostracion se ejecutard en varios pasos. Sea una entrada del problema 3SAT con n
variables y m clausulas.

= Paso 1: Empezamos construyendo un mapa de la tierra que incluye tres paises adyacentes, etiquetados
como T, F,y S. Aqui, T es un cuadrado, F es un (m + 2)-dgono, y S es (n + 2)-dgono. Asignamos a
cada pais un color distinto utilizando tres colores diferentes. Sin pérdida de generalidad, los colores se
distribuyen como se muestra en la figura 18:

Figura 18: Primer paso.

En esta construccién, el color verde representa los valores verdaderos, el rojo representa los valores falsos
y el color de S no indica ningtn valor especifico.

s Paso 2: En nuestra férmula, se incluyen variables y sus negaciones, denominadas literales. Asignamos
valores a cada literal de manera que si una literal x; es verdadera su negacién x; sea falsa. Para garantizar
esta condicién, procedemos de la siguiente forma:

Para cada literal x; y su negacién Z;, agregamos dos paises (cuadrados) en nuestro mapa de la tierra.
Estos paises se conectan entre s{ y a uno de los lados disponibles del pais S (disponibles n lados, uno
para cada variable y su negacién), como se ilustra en la figura 19.

Esto asegura que las literales x; y T; no reciban el mismo color que el pais S, ya que sus paises estan
conectadas a S y, por lo tanto, deben ser coloreadas de rojo o verde. Para garantizar que x; y T; no
reciban el mismo color (es decir, que si z; es verdadero, entonces T; sea falso, y viceversa), conectamos
el pais x; con el pais T;, como se muestra en la figura 19.

De esta manera, si coloreamos el mapa de una forma valida, obtendremos valores de verdad para las
variables y sus negaciones que son consistentes.

= Paso 3: Finalmente, debemos representar cada clausula de la férmula booleana en el mapa. Para esto,
utilizaremos una construccién denominada “gadget” para simular el operador booleano OR (véase la
figura 20). Este gadget es 3-coloreable si y solo si al menos uno de los paises representado por las literales
en la cldusula se asigna o colorea con T (verdadero), como se explicard a continuacién.

El gadget que construiremos es andlogo al descrito en el paso 3 de la demostracion del Teorema 3.9, con
la diferencia de que en esta ocasioén se conecta al pais que representa el valor Falso. Una parte del gadget
se sitiia en la “tierra” y consiste en varios paises conectados a uno de los lados del pais correspondiente
a F'. Dado que el poligono que representa a F' tiene m + 2 lados, podemos utilizar un lado distinto para
cada gadget asociado a cada clausula de la férmula booleana.
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Figura 19: Segundo paso.

Cada uno de estos gadgets incluye también paises en la “luna”, los cuales representan los literales
de la cldusula correspondiente. Para ello, cada literal se modela mediante un poligono en la luna:
especificamente, utilizamos un m-agono para cada literal, o un tridngulo en caso de que m < 3. Esta
construccion permite representar adecuadamente la estructura légica de cada clausula dentro del grafo,
respetando las restricciones de adyacencia y colorabilidad necesarias para la reduccion.

Grafo en la tierra ° @
SO0

_ -~ ° o

Figura 20: Tercer paso (tierra).

Estos paises de las literales en la luna no seran colindantes entre si. En este modelo, para cada clausula,
adicional se agregaran algunos de los paises del gadget en uno de los lados de los m-agonos que
representan las literales utilizadas en esa clausula.

Grafo en la luna

n5 ng M9

T; Ly Ty
Figura 21: Tercer paso (luna).

En el gadget mostrado en la figura 20 que se representa con los grafos de las figura 20 y la figura 21, si
todos los paises asociados a literales se colorean como Falsas (rojo), ninguno de los paises ni, ns, ng 0 na
puede ser coloreado de rojo, ya que colindan con los paises correspondientes a las literales y F. Ademés,
dado que en la tierra el pais ns colinda con ng, si ns es verde, ng debe ser azul, y viceversa. Esto implica
que el pafs ny debe ser coloreado de rojo, ya que colinda con nys (verde/azul) y con ng (azul/verde).

Por lo tanto, el pais n3 debe ser coloreado de verde o azul, dado que estd conectado a ny (rojo). Por
lo tanto, los paises ngy, n1 y ng solo pueden tener los colores verde o azul. Sin embargo, al tratarse de
tres paises y solo dos colores disponibles, necesariamente habra un par de vértices que compartan el
mismo color. Como estos tres paises estan conectados entre si, se produciria una contradiccion, ya que
dos paises conectados tendrian el mismo color. De este modo, si los paises de las tres literales son falsas,
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Mapa en la tierra Mapa en la luna

Figura 22: Tercer paso (coloracion).

es imposible colorear el gadget. Adicionalmente, es sencillo ver que si alguno es verde, se puede colorear

el gadget.

Paso 4: El paso final consiste en intersectar los gadgets, de manera que no colinden con los paises ya
existentes, es decir, se crean los mapas por cada clausal y se busca empatar esos gadgets. Aunque el
resultado es grande, esta bien estructurado, como se muestra en la figura 23. De este modo, el mapa

resultante es 3-coloreable si y solo si la formula booleana se satisface.

Mapa en la tierra Mapa en la luna

S

ng

Tig

Ii2

Nells

Figura 23: Reduccién completa de la formula 3S AT
(x1 V22 VZ3) A (2 V 23 V 24) a una 3-coloracién.

En el caso de que la férmula booleana representada por la figura no se satisfaga, es decir, si z1, x2, y T3
son coloreadas de rojo, entonces al aplicar el proceso descrito en el paso 3, se llega a la conclusion de

que es imposible colorear el mapa.

= Paso 6: Para demostrar que esta reduccion se realiza en tiempo polinomial, supongamos que la férmula

tiene n literales y m cldusulas. Entonces, el nimero de paises se calcula de la siguiente manera:

Paises en la tierra:

e 3 paises para T, F'y S (figura 18).
2 paises por cada variable: se requieren 2n paises extra (figura 19).

o 6 paises por cada cldusula: se requieren 6m paises extra (figura 21).

Paises en la luna:

« 1 pais por cada literal: se requieren a lo mas 2n paises extra (figura 21).
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« 3 pafses conectados a las literales por cada clausal: se requieren 3m paifses adicionales (figura 21).

De este modo, los mapas generados tienen en total 4n + 9m + 3 paises.

Hasta ahora, hemos demostrado que un problema 3SAT puede reducirse al Problema de la Tierra-Luna de
forma general. Dado que 3SAT es un problema NP-completo, la reducciéon implica que el Problema de la
Tierra-Luna también es NP-completo. [

7 Conclusion

Este trabajo ha ofrecido una revisién sobre los problemas de coloracion en grafos. Que se profundiza mas en
la tesis de la cual se deriva este articulo.

Se permiti6 profundizar en la complejidad computacional de los problemas de decisién, destacando la relevancia
de la clasificacion de problemas en P, NP, NP-completo y NP-hard. Ademads, la modelacién de la 3-coloracién coo
un Problema de Satisfacciéon de Restricciones (CSP) proporcioné un marco ttil para abordar estos problemas
desde distintos enfoques. Adicionalmente, se presenté un importante resultado: 3SAT <, Grafo 3-coloreable
(esto significa que cualquier instancia del problema de 3-satisfacibilidad booleana puede transformarse en
tiempo polinomial en una instancia equivalente de un grafo 3-coloreable), acompanado de dos reducciones
significativas.

Grafo 3-coloreable <, 3SAT

Grafo 3-coloreable <, Grafo planar 3-coloreable

Estas reducciones permiten concluir que la 3-coloraciéon de mapas en la tierra es un problema NP-completo,
dado que 3SAT Ilo es.

Finalmente, se abordo el problema de colorear mapas de la Tierra-Luna, que ilustra la evolucién del pensamiento
en la teoria de grafos y la necesidad de seguir investigando areas abiertas para avanzar en nuestra comprension
de la coloracién de grafos. Se concluye con la demostracién 3SAT <, Problema Tierra-Luna, es decir, que
se el problema 3SAT se puede reducir en tiempo polinémico a una instancia del Problema Tierra-Luna, de
dicha reduccién se puede concluir que este problema tltimo es NP-completo. La demostracién se hizo en
colaboracién con mi asesora Edith Vargas y el profesor Mike Behrisch, hasta la fecha dicha demostracion
no ha sido encontrada en alguna bibliografia. Se continué investigando y podemos afirmar que el problema
de colorear mapas en la Tierra-Luna es un problema NP-completo para n =4, n =5 y n = 6 colores. Las
pruebas de estas afirmaciones se encontraran en un futuro articulo.
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Hybrid Discontinuous Galerkin method for
perturbations of the modified Helmholtz equation

Danalie de los Angeles Azofeifa and Miguel Angel Moreles*
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Abstract

The application of the Discontinuous Galerkin Method to elliptic problems usually leads to underdetermined
linear systems, and penalization or suitable constraints are necessary. In this work, we address this issue
for the modified Helmholtz equation. For this elliptic problem, we propose a hybrid numerical flux in the
Discontinuous Galerkin method to introduce unknowns on the edges of the mesh, yielding a well-determined
linear system. Performance is tested as a Poisson solver. Additionally, accurate approximations are
presented for certain Helmholtz problems in Coastal Ocean Modeling.

Palabras clave: Modified Helmholtz equation; Hybrid Discontinuous Galerkin; Numerical flux.

1 Introduction

The modified Helmholtz equation appears in a common physical model, and its numerical solution remains an
active line of research. See the discussion in Yaman & Ozdemir [8] and the recent Yaman et al [6]. In the
former, an integral equation method is proposed for the numerical solution. In this work, a Galerkin approach
is preferred for the numerical solution of perturbations of the modified Helmholtz equation.

The classical Galerkin approach is the continuous Galerkin, Finite Element Method (FEM). A recent and
attractive alternative is the Discontinuous Galerkin (DG) method. Unlike FEM, it is locally conservative
and HP-adaptative. On the downside, the application of the Discontinuous Galerkin Method to elliptic
problems usually leads to underdetermined linear systems, and penalization or suitable constraints are
required. Moreover, Discontinuous Galerkin methods are more expensive because of the need for numerical
fluxes at the edges of the mesh elements, thus yielding more coupled unknowns than FEM. See Riviére [7]
and Di Pietro & Ern [3] for a thorough exposition.

These shortcomings of the DG method can be addressed in part by its descendant, the Hybrid Discontinuous
Galerkin Method (HDG), Bui-Tahn [1]. The numerical flux is hybridized, introducing additional unknowns on
the edges of the mesh, which reduces the coupling between elements. The global solution is then obtained by
solving small and independent linear systems on each element.

For the elliptic problem under study, we use a simple, physically motivated hybrid numerical flux that yields
a well-posed linear system. This is guaranteed by the dominant reaction term in the modified Helmholtz
equation.

The outline is as follows. In Section 2, we follow the HDG methodology and introduce a first-order system
associated with the perturbed modified Helmholtz equations. Then, we delve into the discretization of the
first-order system and show that the resulting finite-dimensional problem is well posed. Numerical tests are
presented in Section 3. First, we illustrate its performance as a Poisson solver in a preliminary comparison with

*moreles@cimat.mx
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a leading method in the literature. Accurate approximations are also shown for some benchmark Helmholtz
problems in Coastal Ocean Modeling. In all examples, we highlight approximations on coarse meshes. We
close our exposition with conclusions and future work.

2 Numerical solution of the modified Helmholtz equation

In what follows, we build on the theoretical and numerical aspects of the finite element method (FEM) as
presented, for instance, in the text [5].

2.1 A first order system for perturbations of the modified Helmholtz equation

For a bounded Lipschitz domain € in R?, let us consider the diffusion-advection-reaction equation for the
unknown function u,

-V - (DVu)+v-Vu+cu=b. (1)

The diffusion term is uniformly elliptic, that is D(x) is symmetric and there exist constants 0 < A < A such
that for almost all z € Q
NéP < €'D(x)e < AlEf?, € eRY (2)

Also, assume that v € (L>=(Q)))%, and ¢, b € L=(Q).

For v =0 and ¢ > 0, equation (1) is known as the modified Helmholtz equation. To construct a Discontinuous
Galerkin approximation, a first step is to construct a hyperbolic-like first-order system. A small advection
term is allowed; the smallness condition is made precise below.

Define the new variable (flux) z = —DVu. Since the matrix D is invertible, Vu = —D~1z, we obtain the

following system

Vu+D 'z = 0
V~z—v-(D_1z)—|—cu = b

Let m = d + 1, and € be the i—th canonical vector. Define

D! 0
K= (_VTD—l C) )

The system becomes

d
Z A;0;u+ Ku="f. (3)

=1
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2.2 A Hybrid Discontinuous Galerkin Method

Here we introduce the essentials of HDG, for full details see Bui-Thanh [1].
For any matrix M, we denote by M;, M/ its row i and column j respectively.

Let us define
F,»(u) = ((Al)iu,...,(.Ad)iu), = 1,2,...,m,

and
Fi(u)

We apply operators component-wise. For instance, for the divergence operator, we have,

V- Fl(u)
V. F(u):= :
V- Fp(u)
We can write system (3) in the form
V-F(u)+Bu=f{, (4)

Assume we have a valid element partition of the domain €. In DG, functions are approximated locally in
each element by polynomials, then coupled with others in adjacent elements by means of a numerical flux.
The basic process is as follows.

Let 7 be an element in the partition. Compute the (L?)™ inner product on 7 of each side of (4) with a test
function v, to obtain
(V- Fw),v)r + (Bu,v), = (£,v),. 5)

Denoting the inner product in th eboundary of 7 by (-, )5, we obtain after integrating by parts,

—(F(u),Vv); + (F(u) -n,v)s, + (Bu,v), = (£,v),. (6)

Continuity is not enforced at the boundary of adjacent elements. Therefore, the boundary term F(u) is
replaced with a boundary numerical flux F*(u*) where u* = u*(u~,u") solves a Riemann problem with
Cauchy data u=, ut. As is standard, the — superscript denotes limits from the interior of e, and the +
superscript, limits from the exterior. In this context, element 7 is denoted by 7~ and the outer normal n by

n .

*

To hybridize the flux, and break the coupling, u* is regarded as an extra unknown to be solved on the
skeleton (the set of element edges F) of the mesh. Renaming u* as @t and F* as F, the problem is to propose
a suitable hybrid numerical flux F(u).

Let us apply this scheme to equation (1) under the following condition

c— %v~ (D~ 'v) > 0. (7)

This condition implies a dominant reaction term, which yields a tamed advection. Consequently, the diffusive
flux is assumed to be continuous across any interface. Instead of the Riemann problem solution approach, we
set the hybrid flux

un

Pon=(, 1) 5)
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Notice the dependence only in the unknown 4.
For each element 7, the DG local unknown u and the extra trace unknown @ need to satisfy
—(F(u),Vv), + (F-n,v)s, + (Bu,v), = (£,v),, (9)
This is complemented by a weak jump condition in the skeleton. Namely, for each edge e
([z-n+u—a],w). =0, (10)
where v in (9), w in (10) are polynomial test functions defined on elements 7 and edges e respectively.

Here, [-] is the jump operator,

On each element, we are led to solving the equations (9) and (10). Let us show that this finite-dimensional
problem is well-posed by showing that under null data, the solution is the trivial one.

Lemma. Assume condition (7) holds. If f(x) =0 and @ =0 on F, then u =0,z =0 in Q.
Proof.

Let us split the test function in the form v = (w,w). The equation (9) using the hybrid flux can be written as

—(u,V-w); + (2, w-n)g, + (D 'z,w), = 0 (11)
—(Z,VU))T + (Z'n+u_aaw)67'+ (CU—V' (Dilz) ?w)T = (f,UJ)T (12)

By integration by parts in (12)
(V-z,0): + (u,w)or + (cu —v- (D7 'z) ,w), = 0. (13)

Let w = z,w = u, and add equations (11) and (13) to obtain

(D 'z,2); + (w,u)or + (cu —v- (D7 'z) ,u), =0

Notice that in the boundary term, u is the inner limit u ™.

We are led to
0 = D 'z2z),+ W ,u)or+(cu—v- (D 'z),u),
> %(D_1Z7Z)T + W, u)ar + (c— %v- (D7'v),u?), >0
Hence, v~ = 0 on 97, and z = 0 in 7. Equation (11) becomes
—(u,V-w), =0.

Integrating by parts
—(u",w-n)y; + (Vu,w), =0.
(Vu,w); =0.
Since w is arbitrary, Vu = 0, and consequently u = 0 in each element wu.

We conclude that ©u =0,z=0in 2. &

Remark. Notice that the result is valid for Poisson problems, ¢ =0, v = 0.
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3 Numerical results
Here, we illustrate some numerical results on a variety of problems, where the perturbed modified Helmholtz
equation HDG solver serves as the computational engine.

The full code of the numerical implementation is available on GitHub:
https://github.com/Danalie/Hibrid-Discontinuos-Galerkin-DG2

We will test benchmark problems in rectangular geometries and regular meshes for simplicity.

We use the classical element functions on the reference segment [—1,1] for 1D applications. We denote by
HDG, a p-order bilinear approximation. In 2D, H DG, H DG4 refer to basis functions on the reference square
[—1,1] x [-1,1], as products of first-order and second-order one-dimensional 1D basis functions, respectively.

To report the accuracy of the approximation, we use the Root Mean Square Error (RMSE). Sometimes, we
normalize by the corresponding norm of the exact solution to obtain the Normalized Root Mean Square Error
(NRMSE).

3.1 Poisson problems
For ¢ =0 and v =0 in (1) we have the pure diffusion equation

~V - (DVu) = b.

To illustrate the HDG method with continuous diffusion numerical flux, as a Poisson solver, we consider D as
the identity matrix.

First a smooth Dirichlet Problem for Poisson’s equation on the domain = (0,1) x (0,1),

_Ap = 07 (xay) S Q7
p(z,y) = 1+z+y+azy, (z,y) €O

The exact solution is p(x,y) = 1 + = + y + zy. The numerical solution using H DG4 on a 10 x 10 grid yields
RMSE = 0 to machine precision; no further refinement is necessary.

The DG method is HP-adaptative. Local high order is straightforward, and accurate approximations are
possible on coarse meshes. For instance, we use H DG, for the Dirichlet problem

—AP = -6, (:r,y) €= (0’1) X (071)7
plr,y) = 1422 +2y% (z,9) € 0.

On a 10 x 10 grid the RM SFE is again zero to machine precision.

A preliminary comparison with the method in [4]. The latter relies on an internal-penalty numerical flux
requiring a penalty parameter chosen heuristically, see (34) therein. Accuracy is shown in an exhaustive list
of test problems. The simplest of such is the Dirichlet problem

—Aq = 2n’sin(nz)sin(my),x € Q= (0,1)?,
qg = 0,x€09,
with analytic solution is ¢. = sin(7z) sin(7y). Our solution is in Table 1.

By inspection of Figure 7 in [4], it is apparent that our results compare favorably. A full comparison is to be
carried out.
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Elements by dimension | HDGs P HDGy P
20 0.0051 | 1.97 | 5.71le-5 | 2.94
30 0.0022 | 2.07 | 1.7e-5 | 2.98
50 0.00079 | 2.00 | 3.7e-6 | 2.98
70 0.00041 | 1.94 | 1.34e-6 | 3.01
100 0.00022 | 1.74 | 4.57e-7 | 3.01
150 8.93e-5 | 2.22 | 1.34e-7 | 3.02

Table 1: Convergence of the two-dimensional Poisson problem using the Root means square error (RMSE). P is
the order of approximation

3.2 Helmbholtz equation

We consider two benchmark problems in Coastal Ocean Modeling (COM) that lead to Helmholtz equations.
A comparison is made with the Finite Volume (FVCOM) as presented in Chen et al [2]. Therein, FVCOM is
applied for the modeling of tidal simulation in a semienclosed basin with tidal forcing at the open boundary
under near-resonance conditions.

Here we apply HDG to illustrate the accurate simulation of the troublesome near resonance case. We remark
that for the Helmholtz equation, condition (7) is not valid. Nevertheless, the numerical results are highly
satisfactory.

3.2.1 A Rectangular Channel

Consider a fluid layer of uniform density that propagates along a channel aligned with the z—direction. More
precisely, a semienclosed narrow channel with length L and variable depth H(z) and a closed boundary at
x = L1 and an open boundary at x = L.

Neglecting Coriolis force and advection of momentum, the governing equations modeling tidal waves propaga-
tion in the semienclosed channel (see Figure 1) are given as

ou 9¢ 0 OuH
§+g%*0a 6t g 81‘ *Oa (xat)g(leL)X(OaT)'

Here, H(x) is the total water depth, g is acceleration due to gravity, u is speed in the x—direction, and ( is
sea-level elevation.

Figure 1: Configuration of the semienclosed channel.
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Assuming harmonic solutions, _ _
¢ =Co(@)e™™",  u=wup(x)e """,

we obtain the one dimensional Helmholtz problem for (j
\/ 0.2
(HG) + ;Co =0. (14)

We specify a periodic tidal forcing with amplitude A at the mouth of the channel,

and a no-flux boundary condition at the wall,

H(Ll)C(I)(Ll) =0.

Let the channel depth decrease linearly toward the end of the channel, so that H(x) can be written as

xH(L)
I

H(z) =

It is readily seen that (14) is a Bessel’s equation. With the given boundary conditions, the analytic solution is
given by

Co(@) = 4 YO@RVTN) Jo(2ky7) — J,
O Yy (2kv/L1)Jo(2kVL) — J,
_ovL

VGH(D)

Jo, Yp are the Bessel’s functions of degree zero and one respectively.

(26D Yo (2k/3)
(2k/L1)Yo (2kV)

o~

o~

where

To compare with the HDG approximation, we solve the system,

Here we have defined z = —H(/, in (14).

The following parameters are considered for a channel very close to resonance.

2w
L = 300km, Ly = 10km, H(L) = 20.1 =———— A=1cm.
S m, H(L) "7 = 124236005 o
The HDG method is applied using nodal polynomials of degree 2 (HDG3). It is compared with the FV method
and the analytic solution. For consistency with the FV method, we consider the approximation at the middle
point z; of the element I; = [z;_ LTl |. As illustrated in Table 4, a second-order approximation with HDG
in a coarse resolution is of greater quality than FV.

The analytic solution describes a standing wave with a node point near the closed side of the channel. As
expected, the reproduction of these features by HDG is accurate. See Figure 2

Remark. As pointed out in Chen et al [2], regardless of the numerical method, a proper selection of horizontal
resolution recover accurately this tidal resonance problem. We argue that the accuracy attained by HDG in
coarse meshes yields a better choice.
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Elements | NRMSE(HDG>) | NRMSE(FV)
10 0.180784 22.3052
20 0.0748017 0.585413
40 0.0235224 0.553751
80 0.00684013 0.43336
160 0.00187985 0.297118
320 0.000495726 0.181964
640 0.000127432 0.102475
1280 0.0000324 0.0546902

Table 2: Relative root mean square error for HDG2 and FV.

25 :

20 |

15 |-

10 -

Amplitude (cm)

T
Exact solution

HDG — o
Y —

150

Distance (km)

200 250 300

Figure 2: Solution for the rectangular channel near resonance case, with HDG nodal with polynomials of degree 2

and 80 elements.

3.2.2 A Sector Channel

Now consider a flat bottom channel in the form of a semicircular section, which in polar coordinates is defined
from 0 to L in the radial direction and from —a/2 to /2 in the angular direction.

The semicircular line of radius L corresponds to an open border, while along the semicircular line of radius L,
and the two sides, they are closed, (Figure 3).

\‘\open boundary
|

Figure 3: Semienclosed sector channel in the polar region L1 <r < L, —

and closed elsewhere.

The following equations govern the nonrotating tidal oscillation,

on
ot

oV,

ot
Ve
ot
Vo Hy

a’l"‘/THO

ror rof

J X
5 <60 < 3. The sector is open at r = L

on
_g— 15
gar7 ( )

on
—g— 16
gfae’ ( )
_— (17)
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Hj is the constant water depth, V., Vjy are the radial and angular r, 6 velocity components, and 7 is the free
surface water elevation.

Assuming a harmonic solution,

0= Re(no(r,0)e™ ")),

we can reduce the equations (15-17) to an elliptic equation

82770 1 37}0 1 (92?70 w2
- D T g =0. 18
or? r Or + r2 002 + gHg o (18)

The physical boundary conditions are as follows

1. At the open mouth of the channel, a harmonic tidal forcing is assumed,

e}

— 0+ 5 a o
no(r,H)—Acos<m7T " ), {L}X(—gyg),

2. On the solid walls, null flux is prescribed,

—KVno(r,0) =0, {L} x <2O‘ ‘;‘) (L1, 1) x {—%}U(Ll,L) x {%}

The analytic solution of this boundary-value problem is:

— Y/ (L1k)Jy(rK) — J,(L1R) Y, (1K) mm a
0) = A o — 0+
01 0) = Ay T () = T (Las) Yo (L) COS( il 2)>
where
mm w
V= — k= —,
a gHo

Ju, Yy are the v th-order Bessel function of the first and second types.
Let us show the HDG solution in the rectangular domain (L1, L] X (—«/2, a/2).

Let V denote the gradient with respect to (r,0) and let

1 0
K=o 1)

Equation (18) becomes a perturbation of the two-dimensional Helmholtz equation,

2

w
=V (KVno) = (r~",0) - Vipo — g?oﬁo =0. (19)

We apply the fourth order (HDG4) scheme developed above for a near-resonance case. The geometric
parameter values are:

2

T
H :1 = — L = :1. = — —
0 m, « VAR 90km, m 0, w 19423600 5’

L = 158km, A = lem.
Figure (4) compares the analytic and numerical solutions. The relative mean square error is shown in Table 3.

Remark. Noteworthy, the 10 x 10 HDG, solution is of grater quality that the 40 x 40 FV solution. In
regards to execution time, the former is attained in half a second on a personal laptop. A solution of the
same quality would require in the order of minutes with the Finite Volume Method in a much finer mesh.
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a) b)

T T T T T T T T T T
r=90km © theta=0.094245 +
r=107km ® theta=0.196344 =
r=124km & o 50 PoTTTETTTD 0., theta=0.298442
r=147km theta=0.384834 °
Analytic r=90km Analytic theta=0.094245
Analytic r=107km Analytic theta=0.196344 ——
Analytic r=124km —— “‘DDBD Analytic theta=0.298442 7
Analytic r=147km —— @& L~ | G  feermrreesan,, remae 'I.D Analytic theta=0.384834

. ",

o,

Amplitude (cm)
w
=1
Amplitude (cm)

L L L L L L L L
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 90 100 110 120 130 140 150 160
Angle Distance (km)

Figure 4: Comparison between the analytic solution to the sector problem with the HDG4 solution using 30 x 50
elements. a) Solution for some r values, b) Solution for some 6 values.

Elements | NRMSE(HDGy) | NRMSE(FV)
5 x5 0.441213 0.920939
10 x 10 0.009879 0.887757
35 x 35 0.0026408 0.803039
40 x 40 0.00115041 0.794262

Table 3: Relative root mean square error for HDG4 and FV.

4 Conclussions

We have introduced a first-order system formulation for a regularly perturbed Modified Helmholtz equation. A
discretization is derived by means of the Hybrid Discontinuous Galerkin method with an ad-hoc numerical flux.
The well-posedness of the finite-dimensional HDG discrete linear system follows from a dominant reaction
condition.

The preliminary comparison with a leading Poisson solver shows promise as a competitive alternative. Research
on this is ongoing.

The proposed HDG discrete method is also applied to Helmholtz’s problems arising from coastal ccean
modeling. It outperforms the Finite Volume method commonly used in this setting.

The application to irregular regions with more general meshes is more elaborate but straightforward. Also, a
parallel computing implementation is desired. Both tasks are left for future work.
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Abstract

In this work we aim to give an overview of least squares for curve fitting. The idea is to illustrate, for a
broad audience, the mathematical foundations and practical methods used to solve this simple problem.
We will consider four methods: the normal equations method, the QR factorization, the singular value
decomposition (SVD), as well as a new approach based on neural networks. The last approach is not as
common as the others, but it is very interesting because, in modern days, it has become a very important
tool in many branches of modern knowledge, like data science (DS), machine learning (ML) and artificial
intelligence (AI).

Palabras clave: Least squares; normal equations; QR; SVD; neural network.

1 Introduction

In mathematics, the term ‘least squares’ refers to an approach for “solving” overdetermined linear or nonlinear
systems of equations. A common problem in science is to fit a model to noisy measurements or observations.
Instead of solving the equations exactly, which in many problems is not possible, we seek only to minimize
the sum of the squares of the residuals.

The algebraic procedure of the method of least squares was first published by Legendre in 1805 [16]. It was
justified as a statistical procedure by Gauss in 1809 [8], where he claimed to have discovered the method of
least squares in 1795 [4]. Robert Adrian had already published a work in 1808, according to [18]. After Gauss,
the method of least squares quickly became the standard procedure for analysis of astronomical and geodetic
data. There are several good accounts of the history of the invention of least squares and the dispute between
Gauss and Legendre, as shown in [4] and references therein. Gauss gave the method a theoretical basis in
two memoirs [9], where he proves the optimality of the least squares estimate without any assumptions that
the random variables follow a particular distribution. In an article by Yves [23] there is a survey of the
history, development, and applications of least squares, including ordinary, constrained, weighted, and total
least squares, where he includes information about fitting curves and surfaces from ancient civilizations, with
applications to astronomy and geodesy.

The basic modern numerical methods for solving linear least squares problems were developed in the late
1960s. The QR decomposition by Householder transformations was developed by Golub and published in
1965 [5]. The implicit QR algorithm for computing the singular value decomposition (SVD) was developed
by Kahan, Golub, and Wilkinson, and the final algorithm was published in 1970 [12]. Both fundamental

*reymundo.itza@cimat.mx
Thect@xanum.uam.mx
fangeluh@cimat.mx
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matrix decompositions have since been developed and generalized to a high level of sophistication. Since then
great progress has been made in methods for generalized and modified least squares problems in direct, and
iterative methods for large sparse problems. Methods for total least squares problems, which allow errors also
in the system matrix, have been systematically developed.

In this work we aim to give a simple overview of least squares for curve fitting. The idea is to illustrate,
for a broad audience, the mathematical foundations and practical methods to solve this simple problem.
Particularly, we will consider four methods: the normal equations method, the QR approach, the singular
value decomposition (SVD), as well as a more recent approach based on neural networks. The last one has
not been used as frequently as the classical ones, but it is very interesting because in modern days it has
become a very important tool in many fields of modern knowledge, like data science (DS), machine learning
(ML) and artificial intelligence (AI).

2 Linear least squares for curve fitting and the normal equations

There are many problems in applications that can be addressed using the least squares approach. A common
source of least squares problems is curve fitting. This is the one of the simplest least squares problems, but
still it is a very fundamental problem, which contains all important ingredients of commonly ill posed problems
and, even worse, they may be ill conditioned and difficult to compute with good precision using finite (inexact)
arithmetic in modern computer devices. We start with the linear least squares problem.

Let’s assume that we have m noisy experimental observations (points)

(tlagl)a (t27g2)7 cee (tm7ﬁm)7

which relate two real quantities, as shown in figure 2. We want to fit a curve, represented by a real scalar
function y(t), to the given data. A linear model for the unknown curve can be represented as a linear
combination of given (known) base functions ¢1, ¢1,...,0n:

y(t) = c191(t) + cada(t) + ... + cndn(t), (1)

where c1, co, . ...c, are unknown coefficients. A first naive approach to compute those coefficients is assuming
that §; = y(¢;) for each ¢ = 1,2,...,m. This assumption yields the linear system §; = c1¢1(¢t;) + cacp2(;) +
et endn(ti), i =1,2,...,m, which can be represented as Ax = b, where

o1(t1)  @2(t1) ... onlt1) c1 1
. o1 (.tz) ¢2(t2) . ¢n§t2) 7 e 0.2 , b Q-2 7
G1(tm) Ga(tm) o Sultm) n .

Depending on the problem or application, the base functions ¢;, 1 < j < n, may be polynomials ¢;(t) = ti—t
exponentials ¢;(t) = e*i !, log-linear ¢ = K e*!, among many others.

There are some drawbacks and difficulties with the previous approach: vector b must belong to the column
space of A, denoted by Col(A), in order to get solution(s) of the linear system. The rank of A is r = dim Col(A),
and plays a important role. When m > r, most likely b ¢ Col(A), and the system has no solution; if m < r,
the undetermined linear system has infinite many solutions; finally, when m = r, if the system has a solution,
the computed curve produces undesirable oscillations, specially near the far right and left points, a well
known phenomenon in approximation theory and numerical analysis, known as the Runge’s phenomenon [27],
demonstrating that high degree interpolation does not always produce better accuracy. The least squares
approach considers the residuals, which are the differences between the observations and the model values:

Ti:ﬁi_zchsj(ti) or r=b-—- Ax.
7j=1
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Ordinary least squares to find the best fitting curve y(¢), consists in finding x that minimizes the sum of
squared residuals

n
2 2 2
Ielf* =) i =b—Ax|>.
j=1
The least squares criterion has important statistical interpretations, since the residual r; in

Ui = y(ts) + 14,

may be considered as a measurement error with a given probabilistic distribution. In fact, least squares
produces what is known as the maximum-likelihood estimate of the parameter estimation of the given
distribution. Even if the probabilistic assumptions are not satisfied, years of experience have shown that least
squares produces useful results.

2.1 The normal equations

The quadratic function f(x) = ||b — Ax|? = xTATAx — 2xT ATb + bTb has gradient and Hessian given by
Vf(x) =2ATAx —2ATb and Hy(x) = 2 AT A, respectively. Assuming that the design matrix A has full
rank, then the Hessian is positive definite, thus invertible, because AT A is an n x n symmetric matrix, and
positive definite since xT AT Ax = ||Ax]||? > 0 when x # 0. Therefore, its minimum X is the unique solution
of the so called normal equations:

ATAx = ATb, ie. x=(ATA)1ATD, (2)

and the best fitting curve, of the form (1), is obtained with the coefficients X = [¢},...,¢,]7. The linear
system (2) can be solved computationally using the Cholesky factorization or conjugate gradient iterations
(for large scale problems).

Example 2.1. The best fitting polynomial of degree n — 1, say y(t) = c; + cat + - - - + ¢, t" 71, to a set of
m data points (t1, §1), (t2, J2),-- ., (tm, Gm) is obtained solving the normal equations (2), where the design
matrix is the Vandermonde matrix

1ot 2 t?’i

1 ty 3 .- 5T
A= ) ?

1ty t3, - ol

A sufficient condition for A to be full rank is that tq,...,%,, be all different, which may be proved using
mathematical induction.

Remark 2.2. Rank deficient least squares problems, where the design matrix A has linearly dependent columns,
can be solved with specialized methods, like truncated singular value decomposition (SVD), regularization
methods, QR decomposition with pivoting, and data filtering, among others. These difficulties are studied
and understood more clearly when we start from basic principles. So, in order to keep the discussion easy we
first consider the simplest case, where matrix A is full rank, although it may be very ill-conditioned or near
singular.

2.2 An interpretation with orthogonal projections

The least squares solution (2) satisfies
AX =P,b, (3)

where the m x m square matrix P, = A(AT A)~! AT defines an orthogonal projection, since
« P? =P,. It projects R™ onto Col(A).

. PAT =P, and P,b L (b— P,b), with b— P, b the residual with minimum norm.
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Figure 1: Col(A) is orthogonal to the minimum residual t =b — AX=b — P, b.

Therefore, the vector p = P, b is the orthogonal projection of b onto the column space of A, as illustrated in
Figure 1. Additionally, relation (3) defines a well posed problem (a consistent linear problem), with unique
solution, since A is full rank. This unique solution is the least squares solution obtained from the normal
equations.

2.3 Instability of the normal equations method

The normal equations approach is a very simple procedure to solve the linear least squares problem. It is
the most used approach in the scientific and engineering community, and very popular in statistical software.
However, it must be used with precaution, specially when the design matrix A is ill-conditioned (or it is rank
deficient) and finite precision arithmetic, in digital conventional devices, is employed. In order to understand
this phenomenon, it is convenient to show an example and then discuss the results.

Example 2.3. The National Institute of Standards and Technology (NIST) is a branch of the U.S. Department
of Commerce responsible for establishing national and international standards. NIST maintains reference
data sets for use in the calibration and certification of statistical software. On its website [1] we can find the
Filip data set, which consists of 82 observations of a variable y for different ¢ values. The aim is to model this
data set using a 10th-degree polynomial. This is part of exercise 5.10 in Cleve Molers’ book [20].

For this problem we have m = 82 data points (¢;,;), and we want to compute n = 11 coefficients ¢; for the
10th-degree polynomial. The m x n design matrix A has coeflicients a;; = tf ~!. In order to given an idea
of the complexity of this matrix, we observe that its minimum coefficient is 1 and its maximum coefficient
is a bit greater than 2.7 x 10%, while its condition number is x(A) ~ O(10'®). The matrix of the normal
equations, AT A, is a much smaller matrix of size n x n, but more singular, since its minimum and maximum
coefficients (in absolute value) are close to 82 and 5.1 x 1019, respectively, with a very high condition number
k(AT A) ~ O(10%°). The matrix of the normal equations is highly ill-conditioned in this case because there
are some clusters of data points very close to each other with almost identical ¢; values.

The computed coefficients ¢; using the normal equations are shown in Table 1, along with the certified values
provided by NIST. The NIST certified values were found solving the normal equations, but with multiple
precision of 500 digits (which represents an idealization of what would be achieved if the calculations were
made without rounding error). Our calculated values differ significantly from those of NIST, even in the sign,
the relative difference ||€ — Cpistl|/||Cnise|| is about 118%. This dramatic difference is mainly because we are
using finite arithmetic with 16-digit standard IEEE double precision, and solving the normal equations with
the Cholesky factorization yields a relative error amplified proportionately to the product of the condition
number times the machine epsilon. The computed residual keeps reasonable, though. Figure 2 shows Filip
data along with the certified curve and our computed curve. The difference is most visible at the extremes,
where our computed curve shows some pronounced oscillations.
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Polynomial coefficients NIST (x10%) Normal equations (x10?)

1 -1.467489614229800 3.397167285217155
Co -2.772179591933420 5.276500833542165
C3 -2.316371081608930 3.545138197108058
C4 -1.127973940983720 1.345510235823048
Cs -0.354478233703349 0.316966659871258
Co -0.075124201739376 0.047864845714924
cr -0.010875318035534 0.004604461850533
C8 -0.001062214985889 0.000269285797556
Cy -0.000067019115459 0.000008526963608
C10 -0.000002467810783 0.000000107514812
C11 -0.000000040296253 0.000000000044407

Relative difference 0 118%

Norm of residual 0.028400823094900 0.041260859317660

Table 1: Comparison of numerical results with the NIST’s certified values.

10th-degree polynomial fitting

0.95 :
* Data points
Normal eq
09— NIST |
y

0.85

0.8+ 1
0.75 : : :

-9 -8 -7 -6 -5 -4 -3
1

Figure 2: Computed polynomial curve along with NIST’s certified one.

3 Orthogonal projections and the QR factorization

The previous numerical results for solving a least square problem have shown instability for the normal
equations approach, when the design matrix is ill-conditioned. However the normal equations approach
usually yields good results when the problem is of moderate size as well as well-conditioned. For the cases
where the design matrix is ill-conditioned the QR factorization method is an excellent alternative. The SVD
factorization is convenient when the design matrix is rank deficient, as will be discussed below.

3.1 The QR factorization
We begin with the following theorem in reference [27].
Theorem 3.1. Each A € C™*"™(m > n) of full rank has a unique reduced QR factorization A = @E with

Tjj>0.

For simplicity we keep the discussion for the case A € R™*". In this case @ is the same size than A
and R € R™ ™ is upper triangular. Actually this factorization is a matrix version of the Gram-Schmidt
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orthogonalization algorithm. More precisely, let a;,as, ..., a, € R™ be the linear independent column vectors
of A ~
| |
A=1| a; ay -+ a, |,
L |
then the orthonormal vectors q1, qg, -.- , q, en R™ obtained from the Gram-Schmidt orthogonalization gives

the following matrix
. |

Q=|a a - an |,

. |

which has the same column space that A. These vectors are constructed sequentially, starting with q; =
ai/|lai|l, and they satisfy

j—1
v .
94 = AR con Vv;=a; — (qlTaj)ql - = (quflaj) qj—1 =a; — Z(qiTaj)qi 1<j5<n.
J i=1
Using the notation r;; = q7 a; for i > j and rj; = ||v;||2, we obtain

ay
q1 = )

T11 a _

as —riaqq 1 = 71141,
Q@ = ’ a = ri2qi+ra2qq,

"2 and .

a, — Z?;ll Tin Qi ap, = Tpdi+7r2pd2+ -+ Tndn -

dn = .
rnn
This set of equations leads to the so called reduced QR factorization:
11T T12 ... Tin
| | ‘ | | | 0 T22 cee Top ~ o~
A = a; a a, |=| a1 Q@ - dy : =QR
| | . | : Co
0 0 ... 7Tpn

This factorization allows another way to solve the overdetermined system Ax = b, that arise in linear least
square problems. The key property is that Q7 Q = I,,, where I,, is the identity matrix of size n x n. Then
Q\RX =b is equivalent to Rx = @Tb, (4)

and this triangular system is solved easily using backward substitution. Furthermore, the obtained solution is
the least squares solution, since the following set of relations are equivalent

Rx=Q"b, QRx=QQ™b, Ax=P.b, Ax=P,b,
Q
where the projection matrices satisfy P.b = P, b because the column space of A is equal to the column space
Q
of Q.

A complete QR factorization of A goes further by adding m — n orthonormal columns to @, and adding m —n
rows of zeros to R, obtaining an orthogonal matrix Q € R™*™ and an upper triangular matrix R € R™*™ as
shown in Figure 3. In the complete factorization the additional columns q;, j =n +1,...,m, are orthogonal
to the column space of A. Of course, the matrix @ is an orthogonal matrix, since QTQ = I,,,, so @~ = Q7.

Theorem 3.2. Any matriz A € R™*™ (m > n) has a complete factorization QR, given by A = QR with
Q € R™*™ an orthogonal matriz and R € R™*™ an upper triangular matriz.

Warning. The Gram-Schmidt algorithm is numerically unstable (sensitive to rounding errors). Stabilization
methods can be used by changing the order in which the operations are performed. Fortunately, there is an
stable algorithm to compute the QR factorization which relies on Householder reflections.
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Figure 3: The reduced and complete QR factorizations of A

)

3.2 Householder reflections

A Householder reflection is a linear transformation with matrix H, which is constructed from a given fixed

vector x in a Euclidean space RP (p > 2), seeking its reflected vector to be H x = ||x||e; = (||x]|,0,...,0)T,

as shown in Figure 4. This reflection reflects on a hyperplane H+ with normal unitary vector u, and is given

N
” - 0/\ - X
PELW = ldle, Xy
Figure 4: Householder reflection with vector v = ||x|| e1 — x.
by
H=1-2uu’, with u= HV—H, v = x| e —x, (5)
v

where the outer (or external) product uu’ gives rise to a rank one symmetric matrix. We emphasize that,
given the vector x, the projection H performs the following transformation

T ||
X2

X = . — Hx= . = ||x| e1.
Tp 0

This matrix is a symmetric orthogonal matrix, i.e. it satisfies HT H = I, HT =H.

Matrix A is transformed into an upper triangular matrix R by successively applying Householder matrix

transformations Hy,
H, --HyH{ A=R.



Boletin Sociedad Mexicana de Computacién Cientifica y sus Aplicaciones 73

Each Hj matrix is chosen to introduce zeros below the diagonal in the k-th column. For example, for a matrix
A of m xn =15 x 3, the H, operations are applied as shown below:

s A A2 R
1 1 1 1 1 1
a1 a2 ais agl) agz) ag?’) agl) agz) ags) aﬁ) aglz) a%)
0 ® (1) 0 2 2 2 (2
a1 G2 Q23 a212 a2i), (22 a2§ 0  ayy Gy
ast azz ass| — | 0 o) Y| =10 0 4F|—=1| o 0 )|
a4 Qa2 Q43 0 aly) aly 0 0 a 0o 0 0
as1  as2 53 0 a%) a(5§) 0 0 a?) 0 0 0
A H A HyH, A HsH>H, A

where each Hy € R™*™ is of the form
[ { I, OF }
k [0) H )

which is a symmetric orthogonal matrix (see [15] for more details), I, is the identity matrix of size k x k, and
O is the zero matrix of size (m — k) x k. Actually, for any vector x there are two Householder refletions, as
shown in Figure 5, and each Householder matrix H is constructed with the election v = sign(z1)||x[| e1 + x.
It is evident that this election allows ||v|| to never be smaller than ||x||, avoiding cancellation by subtraction
when dividing by ||v|| to find u in (5), thus ensuring stability of the method.

A

Y

Figure 5: Two Huoseholder reflections, constructed from x.

The above process is called Householder triangularization [14], and currently it is the most widely used method
for finding the QR factorization. There are two procedures to construct the reflection matrices: Givens
rotations and Householder reflections. Here we have described only Householder reflections. For further
insight, we refer the reader to [11], [15] and [27].

We may compute the factorization A = @}A‘B, with @ = (H, --- HyH;)T. However, if we are interested only in
the solution of the least squares problem, we do not have to compute explicitly either matrices Hj, or @ We
just find the factor R and store it in the same memory space occupied by A, and Qb and store it in the
same memory location occupied by b. At the end, we solve the triangular system with backward substitution,
as shown bellow.

Householder triangularization algorithm for solving Ax = b with QR

fork=1,...,n ** Triangularization **

x=A(k:m, k)
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v = sign(z1)||x]|e1 +x

v=v/Iv|

Ak:m, k:n)=A(k:m, k:n)—2v(vI A(k:m, k:n))
b(k:m) =b(k:m)—2v(vI b(k : m))

end

x(n) = b(n)/A(n,n) ** Backward sustitution **

fork=n—-1:-1:1

x(k) = (b(k) — A(k,k+1:n) bk +1:n) )/A(k, k)

Notation. We have used the MATLAB notation for arrays. For instance, x = A(k : m, k) represents the

vector constructed with coefficients a;x, k < i < m and k fixed; A(k : m, k : n) represents the submatrix with

coefficients {a;;};7; ;_;; b(k : m) represents the subvector {b;};”;.

The most important steps in the previous algorithm are the last two lines in the ** Triangularization ** loop.
The main idea is that it is not necessary to construct H to compute a product H y, since
v

v’

so we only need the vectors v and y at each step of the process. Numerical results are shown in Section 6.

Hy=(I—-2uul)y =y —u(uly) with u=

4 The singular value decomposition (SVD)

4.1 Symmetrizing

The key idea to achieving the SVD of a matrix A is symmetrizing. That is, if A € R™*"™ we can consider
the symmetric positive semidefinite matrices A7 A € R?*" and A AT € R™*™, By the spectral theorem for

symmetric matrices, these matrices are diagonalizable. For instance, if A1,..., A, are the eigenvalues of A7 A
with orthonormal eigenvectors vy, vo,...,v,, then
] S oo
0 X - 0
ATA=vDVT with V=|v, vy -~ v, |, D= ,
‘ ‘ ’ 0o 0 - A

Each eigenvalue A; is real and non-negative, because

AV, 2
ATA V= )‘j Vv = V?ATA \Z )\j V,]er = >‘j = V|J|! > 0. (6)
Vi

Therefore, we can order the eigenvalues. Without loss of generality, we assume that
AL>A > 20, 20

We remark that some eigenvalues may be repeated. Furthermore, each eigenvalue \; of ATA is also an
eigenvalue of A AT since
ATAVj = AVj = (A AT)AVj = >‘j AVj.
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4.2 Reduced SVD

We have found that matrices ATA and A AT have the same eigenvalues A\; > Ay > ... > \, > 0 with
corresponding eigenvectors

Vi,Va,...,v, ER" and Avy, Avs, ..., Av, € R™,

respectively. The eigenvectors v; of AT A are orthonormal. However, the eigenvectors of A AT are only
orthogonal ((Av;)TAv; = vI AT Av; = vI'\;v; = )\;d;;), so we normalize them to get an orthonormal set
ug,...,u, in R™ " N
Vj Vj .
u: = = s ]:1,2,...,72,. (7)
T TA T ()

Definition 4.1. Non-negative values

=AM 2o =VA> . >0,=\ >0,

are called the singular values of the matrix A.

Therefore, according to (7), the following relationship is obtained between the two sets of orthonormal vectors
{ug,...,u,} CR™ and {vy,...,v,} CR™

AVjZJju]‘, j:1,2,...,n. (8)
These relationships can be expressed as the matrix product:

Al vi vo - vy | =| ocompg ocouy -+ ouu, |,
| | | | |
which leads to
’ ‘ ‘ o1 0 0 v
0 o9 0 — v; —
Ao | w2 Un . ; (9)

o 0 - oy — vi —

fj(mxn) i(nxn) VT (n xn)

This factorization can also be expressed as sum of rank one matrices:

A=owv] +oouevy + - +o,u, vl with o > 09> >0, >0. (10)

n?

Note. In the matrix equation AV = US or A= ﬁiVT, the matrix U is a rectangular matrix of size m x n
with orthonormal columns in R™, ¥ is an n x n diagonal matrix with singular values, and V is an n x n
orthogonal matrix (i.e. V! = VT). The reduced SVD is also valid for matrices with complex entries or
coefficients, but now V is Hermitian, so V* (the complex conjugate) replaces V7 in the matrix factorization.
For the interested reader, reference [26] is an extraordinary paper that surveys the contributions of five
mathematicians who were responsible for establishing the existence of the SVD and developing its theory.

4.3 Full SVD

In most applications, the reduced SVD decomposition is employed. However, in textbooks and many
publications, the ‘full’ SVD decomposition is used. The reduced and full SVD are the same for m = n. We
illustrate two cases: m > n and m < n.
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« Case m > n: the columns of the matrix U do not form a basis of R™. We augment U € Rmxn
to an orthogonal matrix U € R™*™ by adding m — n orthonormal columns and replacing ¥ € R"*" by
3 € R™*™ adding m — n null rows X:

01 0 0
0 ()] 0
| B
. Vg
A=fu; uwy -+ Uy Upp1 - Uy 0o 0 - o, . . (11)
0 0 0 :
| S
0 0 0 ]
U (m xm) 3 (m xn) VT (n x n)

« Case m < n: the reduced decomposition is of the form A = USV?. The rows of V7 does not
form a basis of R" so we must add n —m orthonormal rows to obtain an orthogonal matrix VT and
adding n — m null columns to ¥ to get X:

T
I
o 0 0 0 0 .
0 oo 0 0 0
A=|w uy -+ wu || . . . . | vE . (12)
: : T V;I;H-l o
0 0 om 0 0 .
I
U (m xm) ¥ (mxmn) VT (n xn)

The previous results are summarized in the following theorem.

Theorem 4.2. Fvery matriz A € R™*™ (C™*"™  in the complex case) has a singular value decomposition of

the form
A=UxVT, (A=UXV*, in the complex case) (13)

with the orthogonal matrices U, V' (or unitary, in the complex case), and the matrix ¥ as indicated in the
previous development.

4.4 Computing the SVD

As stated in [27] (Lecture 23), the SVD of A € C™*" (m > n), A = UXV* is related to the eigenvalue
decomposition of the covariance matrix A*A =V £*X V* and mathematically it may be calculated doing the
following:

1. Form A*A;
2. Compute the eigenvalue decomposition A*A =V A V™,

3. Let ¥ be the non negative diagonal square root of A;

>~

. Solve the system U X = AV for unitary U (e.g. via QR factorization).

But the problem with this strategy is that the algorithm is not stable, mainly because it relies on the
covariance matrix A*A, which we have found before in the normal equations for least squares problems.
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Additionally, the eigenvalue problem in general is very sensitive to numerical perturbations in computer’s
finite precision arithmetic

An alternative stable way to compute the SVD is to reduce it to an eigenvalue problem by considering a
2m x 2m Hermitian matrix and the corresponding eigenvalue system.

(3 5] = oly]- (i)

since A = UXV™* implies AV = UX and A*U = V 3. Thus the singular values of A are the absolute values
of the eigenvalues of H, and the singular vectors of A can be extracted from the eigenvectors of H, which
can be done in an stable way, contrary to the previous strategy. This Hermitian eigenvalue problems are
usually solved by a two-phase computation: first reduce the matrix to tridiagonal form, then diagonalize
the tridiagonal matrix. The reduction is done by similarity unitary transformations, so the diagonal matrix
contains the information about the singular values.

Actually, this strategy has been standard for computing the SVD since the work of Golub and Kahan in
the 1960s [10]. The method involves in phase 1 applying Householder reflections alternately from the left
and right of the matrix to reduce it to an upper bidiagonal form. In phase 2, the SVD of the bidiagonal
matrix is determined with a variant of the QR algorithm. More recently, divide-and-conquer algorithms [21]
have become the standard approach for computing the SVD of dense matrices in practice. These strategies
overcome the computational difficulties associated with ill-conditioned or rank-deficient matrices during the
SVD calculations.

4.5 Least squares with SVD

Most of the software environments, like MATLAB and Phyton, incorporate very efficient algorithms and state
of the art tools related to SVD. So, using those routines provide reasonable accurate results in most of the
cases.

Concerning linear least squares problems, we know that this often leads to an inconsistent overdetermined
system Ax = b with A € R™*™, m > n. Thus, we seek the minimum of the residual r = b — Ax. We know
that if A is of full rank r = n, then AT A is positive definite symmetric and the least squares solution is given
by

%= (A"A)" AT
Via SVD, A = UXVT, and using that V—! = VT, U~1 = UT, £T% invertible, we have

(ATA) AT = (vETUTUsvT) T v sTUT = v (£7%) T STUT = vsiuT = Af,

and the least squares solution is given by

%= A'b. (14)
What is remarkable is that the solution given by (14) is still valid, even if A is rank deficient. The following
formal definition of the pseudoinverse corroborate our claim.

Definition 4.3. Let A = UXV7T a real m x n matrix with rank r < n, then its pseudoinverse is the n x m
matrix, denoted by Af, given by

AT =VvstuT  with X =diag(1/04,...,1/0,,0,...,0) € R™*™, (15)
With this definition A is well defined and it has the same size as AT. If A is full rank, then AT is called the

left inverse of A since ATA = 1I,,, and P, = AAT defines the projection onto the column space of A. When A
is an invertible square matrix A" = A~

Fitting data to a polynomial curve. Given the point set (t1,91),..., (tm,¥m). The algorithm for
calculating X € R**!, with the coefficients of the polynomial of degree n, consists of the following steps:
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1. Form the m x (n + 1) design matrix A, with coefficients a;; = 7"

2. Compute the SVD of A = U V7. Actually, the reduced SVD, A = ﬁiVT, is sufficient.

w

. Calculate the generalized inverse AT = V XTUT.

>~

. Calculate X = A'b, with b = {§;}7~, being the vector of observations.

In Section 5 we present numerical results and compare them with the results obtained with QR and normal
equations algorithms.

5 Numerical comparisons of QR and SVD

As before we consider the Filip data set, which consists of 82 observations of a variable y for different ¢ values.
The aim is to model these data set using a 10th-degree polynomial, using both, the QR factorization and
SVD, to solve the associated least squares problem. In Section 2 we gave a description of the data and showed
numerical results with the normal equations approach. Here we use the QR algorithm with Householder
reflections, introduced in Section 3, and the SVD, described in Section 4.

Table 2 shows the coefficient values of the polynomial obtained with both algorithms. The coefficients obtained
with the QR algorithm are very close to the certified values of NIST (shown in Table 1), while the coefficients
obtained with SVD are far from the certified ones, with two or three orders of magnitude apart and different
signs for most of them. In fact, the relative difference ||€ — cpist||/||Cnist|| of the coefficients obtained with
the stable QR is insignificant, while the relative difference is as high as 100% when the SVD is employed.
However, the polynomial obtained with the SVD shows that the data still fit fairly well to the obtained curve,
as shown in Figure 6. Again, the main differences between the accurate curve (red line) with respect to the
less accurate (blue line) is more evident at the left and right extremes of the interval.

A better measure for accuracy is the norm of the residual ||b — AX]||, since the algorithms are designed to
minimize this quantity. We observe that the residual obtained with the QR algorithm is very close to the
certified one (shown in Figure 2) and, surprisingly this residual is slightly lower than the certified one, while
the residual obtained with the SVD is higher than the certified one but lower than the one obtained with the
normal equations. So, we conclude that the best method for this particular problem is QR, followed by SVD
and the less accurate is obtained with the normal equations.

Polynomial coefficients QR (x10%) SVD

c1 -1.467489624841714 | 8.443047022531269

Co -2.772179612867669 | 1.364997532790476

C3 -2.316371099847143 | -5.350747822573923

Ca -1.127973950228995 | -3.341901399544638

Cs -0.354478236724762 | -0.406458058717373

Cs -0.075124202404921 | 0.257727453320758

cr -0.010875318135669 | 0.119771677097139

cs -0.001062214996057 | 0.023140894524175

Co -0.000067019116127 | 0.002403995388431

Clo -0.000002467810808 | 0.000131618846926

ci1 -0.000000040296253 | 0.000002990001355
Relative difference 7.68 x 10~ % 100%

Norm of residual 0.028210838088578 0.032726981836403

Table 2: Comparison of polynomial coefficients: QR and SVD.
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Figure 6: Computed polynomial curve with QR and SVD.

6 Neural network approach

Finally, we present a neural network (NN) framework to address the same fitting problem analyzed in the
preceding sections. While NNs have historically been less common than classical methods, they have recently
emerged as powerful tools across numerous scientific disciplines. Our goal is to develop a NN that can be
used together with the known data for curve fitting. If we have m observations

(t17 g1)7 (tQa g2)7"'a (tma gm)v (16)
where ¢;, 1 = 1,2,..., m, are measurements of y(t;). The idea is to model y(t) as a NN of the form:
y(t) = y(t, W, b), (17)

where W and b are two sets of parameters of the neural network, which must be determined. This NN model
consists of an input layer, L hidden layers, each one containing Ny neurons, and an additional output layer.
The received input signal propagates through the network from the input layer to the output layer, through
the hidden layers. When the signals arrive in each node, an activation function ¢ : R — R is used to produce
the node output [17, 24, 28]. Neural networks with many layers (two or more) are called multi-layer neural
networks.

Example 6.1. The model corresponding to a neural network with a single hidden layer consisting of five
neurons, each activated by the hyperbolic tangent function, and a scalar output obtained through a linear
combination of the hidden activations, can be expressed as

7(t, W,b) = W2p(W't + b') + b2,

where ¢(z) = tanh(z). Explicitly, in this case, the neural network can be written as a functional representation
of the input x in the following form:

y(t,W,b) = W¢tanh(Wit+b}) + W2 tanh(Wyt + b)) +
W3 tanh(W3t + by) + W, tanh(W, 't + b)) +
W2 tanh(Wat + b) + b,

Hence, the complete model involves 16 unknown parameters, which entirely determine the behavior of the
neural network. The unknown parameters are optimized using an appropriate optimization algorithm (e.g.,
gradient descent) based on the given training dataset (16). The goal is to minimize a loss function that
quantifies the discrepancy between the network’s predictions and the true target values, which is described
below.
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Remark 6.2. It is known that any continuous, non-constant function mapping R to R can be approximated
arbitrarily well by a multilayer neural network, see [6, 13, 25]. This result establishes the expressive power of
feedforward neural networks. Specifically, it shows that even a network with a single hidden layer, containing a
sufficient number of neurons and an appropriate activation function, can approximate any continuous function
on compact subsets of R.

6.1 General NN architecture

In this work, the neural network is described in terms of the input ¢ € R, the output y € R, and an input-to-
output mapping t — g. For any hidden layer ¢, we consider the pre-activation T¢ € RV and post-activation
Y* € RNe+1 vectors as

Tt = [TLE),..., T, ()] and YY) = [YL(8),..., Y, (D] (18)

respectively. Thus, the activation in the ¢-th hidden layer of the network for j = 1,..., Nyi1, is given by [19]:

Ny
Vi) =bi+ > WETH),  =1,....L, (19)
k=1
where
THt) =t,  TH) = oY), £=2,...,L, (20)
for k=1,...,Ny. Here, W,f and b’ are the weights and bias parameters of layer ¢. Activation functions ¢

must be chosen such that the differential operators can be readily and robustly evaluated using reverse mode
automatic differentiation [7]. Throughout this work, we have been using relatively simple feedforward neural
networks architectures with hyperbolic tangent and sigmoidal activation functions. Results show that these
functions are robust for the proposed formulation. It is important to remark that as more layers and neurons
are incorporated into the NN the number of parameters significantly increases. Thus the optimization process
becomes less efficient.

Figure 7 shows an example of the computational graph representing a NN as described in equations (18)—(20).
When one node’s value is the input of another node, an arrow goes from one to another. In this particular
example, we have
layers = (N¢), 7 = (1,4,4,4,4,1).

That is, the total number of hidden layers is 4. The first entry corresponds to the input layer (¢ = 1) and
contains a single neuron. The next four entries correspond to the hidden layers, each one with N, = 4 neurons.
Finally, the last layer is the output layer and contains one neuron, corresponding to a single solution value.
Bias is also considered (light grey nodes), there is a bias node in each layer, which has a value equal to the
unit and is only connected to the nodes of the next layer. Although, the number of nodes for each layer can

be different; the same number has been employed in this paper for simplicity.
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Figure 7: Neural network with 4 hidden layers, one input and one output.
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6.2 Optimization Algorithm

The parameters W and b in (17) are determined using a finite set of training points {¢;, ; }7*, corresponding
to the dataset in (16). Here, m denotes the number of training points, which can be arbitrarily selected. The
parameters are estimated by minimizing the mean squared error (MSE) loss

NU/
=1

1
E=—
Ny
where E represents the error over the training dataset {t;,9;}" . The neural network defined in (18)—(20) is
trained iteratively, updating the neuron weights by minimizing the discrepancy between the target values g;
and the outputs y(t;, W, b).

Formally, the optimization problem can be written as

fain E([W, b)), (22)
where the vector [W, b] collects all unknown weights and biases. Several optimization algorithms can be
employed to solve the minimization problem (21) and (22), and the final performance strongly depends on
the residual loss achieved by the chosen method. In this work, the optimization process is performed using
gradient-based algorithms, such as Stochastic Gradient Descent (SGD) or Adam [2]. These methods iteratively
adjust the network parameters in the direction that minimizes the loss function. Starting from an initial guess
[W0 b0, the algorithm generates a sequence of iterates [W!, bl], [W2 b2], [W3 b?],..., converging to a
(local) minimizer as the stopping criterion is satisfied.

The required gradients are computed efficiently using automatic differentiation [3], which applies the chain
rule to propagate derivatives through the computational graph. In practice, this process is known as
backpropagation [22]. All computations were carried out in Python using Pytorch [2], a widely used and
well-documented open-source library for machine learning.

6.3 Results

To illustrate the capability of the NN, we consider the same curve-fitting problem based on the Filip dataset,
which consists of 82 observations of a variable y at different values of t. The computed solution is shown in
Figures 8 and 9. The predicted values of y are obtained by training all the parameters of a five-layer neural
network: the first layer contains a single neuron, while each hidden layer consists of twenty neurons. The
hyperbolic tangent and sigmoidal activation functions are used throughout the network. It is worth noting
that the NN solution closely resembles the one obtained using a 10th-degree polynomial fit (NIST). Therefore,
this example shows its potential for generalization and robustness in more challenging scenarios.

7 Conclusions

Fitting a curve to a given set of data is one of the most simple of the so called ‘ill-posed’ problems. This is an
example of a broad set of problems called least squares problems. This simple problem contains many of the
ingredients, both theoretical and computational, of modern challenge and complex problems that are of great
importance in computational modelling and applications, specially when computer solutions are obtained
using finite precision machines. Commonly there is no ‘best computational algorithm’ for general problems,
but for a particular problem, like the one considered in this article, we can compare results obtained with
different approaches or algorithms.

It is clear that the best fit to a 10th-degree polynomial is obtained with the QR algorithm, as it produces the
smallest residual when compared to algorithms based on the normal equations and SVD. It is noteworthy that
each method yields entirely different coefficients for this polynomial. Not only the sign of the coefficients but
also the scale of the values differ drastically. These results demonstrate that even simple ill-posed problems
must be studied and numerically solved with extreme care, employing stable state-of-the-art algorithms and
tools that avoid the accumulation of rounding errors due to the finite arithmetic precision of computers.
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Figure 8: NN solution with the hyperbolic tangent as activation function.

Neural network curve fitting
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Figure 9: NN solution with the sigmoidal as activation function.

Concerning the neural network approach, we obtained qualitatively excellent numerical results. The resulting
fitted curve is smooth and provides an accurate representation of the data, and it appears to offer a slightly
improved approximation when compared to the QR-based fit, while maintaining sufficient flexibility to capture
the overall behavior. These results suggest that the multi-layer neural networks constitute an effective and
robust framework for curve fitting. Is the NN approach better than the QR algorithm for curve fitting?
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Again, this general question depends of what you are looking for. But if you are able to construct with NN
a 10th-degree polynomial that fits the given experimental data, then you are able to answer this particular
question. A diligent reader may put their hands on the problem in order to give an answer.

Acknowledgements. We would like to express our sincere gratitude to the Department of Mathematics
at Universidad Auténoma Metropolitana—Iztapalapa for their valuable support of this research work. The
authors also gratefully acknowledge partial support from the Secretaria de Ciencia, Humanidades, Tecnologia
e Innovacién (Secihti) through the Investigadores e Investigadoras por México program and the Ciencia de
Frontera Project No. CF-2023-1-2639.

References

[1] ~Statistical reference datasets: Filip data. https://www.itl.nist.gov/div898/strd/11ls/data/Filip.
shtml. Dataset web - no author specified.

[2] "Pytorch. https://pytorch.org, 2025. Pigina web del proyecto.

[3] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine
learning: a survey, 2015.

[4] A. Bjorck. Numerical Methods for Least Squares Problems. STAM, 1996.

[5] P. Businger and G. H. Golub. Linear least squares solutions by householder transformations. Numerische
Mathematik, 7:269-276, 1965.

[6] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303-314, 1989.

[7] D. A. Fournier, H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen, and J. Sibert.
Ad model builder: Using automatic differentiation for statistical inference of highly parameterized complex
nonlinear models. Optimization Methods & Software, 27(2):233-249, 2012.

[8] C. F. Gauss. Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections.
Dover, New York, 1963. First published in 1809.

[9] C. F. Gauss. Theory of the Combination of Observations Least Subject to Errors. Part I, Part II,
Supplement. STAM, Philadelphia, 1995.

[10] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. STAM
Journal on Numerical Analysis, 2(2):205-224, 1965.

[11] G. H. Golub and C. F. V. Loan. Matriz Computations. The Johns Hopkins University Press, 1983.
Ediciones: 1983, 1989, 1996, 2013.

[12] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numerische
Mathematik, 14:403—-420, 1970.

[13] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359-366, 1989.

[14] A. S. Householder. A class of methods for inverting matrices. Journal of the Society for Industrial and
Applied Mathematics, 6(2):189-195, 1958.

[15] L. H. Judrez. Resultados relevantes del dlgebra lineal en modelos y aplicaciones. Revista Metropolitana
de Matemdticas Mizba’al, 16(1), 2025.

[16] A. M. Legendre. Nouwelles methodes pour la determination des orbites des cometes. Courcier, Paris,
1805.



Boletin Sociedad Mexicana de Computacién Cientifica y sus Aplicaciones 84

[17] S. Marsland. Machine Learning: An Algorithmic Perspective. CRC Press, 2015.
[18] M. Merriman. Note on the history of the method of least squares. The Analyst, 4(5):140-143, 1877.

[19] C. Michoski, M. Milosavljevic, T. Oliver, and D. Hatch. Solving irregular and data-enriched differential
equations using deep neural networks, 2019.

[20] C. B. Moler. Numerical Computing with MATLAB. STAM, 2004. Segunda edicién segtin tu bibitem.

[21] Y. Nakatsukasa and N. Higham. Stable and efficient spectral divide and conquer algorithms for the
symmetric eigenvalue decomposition and the svd. STAM Journal on Scientific Computing, 35(3):A1325—
A1349, 2013.

[22] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, San Francisco, CA, 2015.

[23] Y. Nievergelt. A tutorial history of least squares with applications to astronomy and geodesy. Journal of
Computational and Applied Mathematics, 121:37-72, 2000.

[24] S. Pattanayak. Pro Deep Learning with TensorFlow: A Mathematical Approach to Advanced Artificial
Intelligence in Python. Apress, New York, NY, 2017.

[25] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143-195, 1999.

[26] G. W. Stewart. On the early history of the singular value decomposition. SIAM Review, 35(4):551-566,
1993.

[27] L. N. Trefethen and D. B. III. Numerical Linear Algebra. SIAM, 1997.

[28] G. Zaccone and R. Karim. Deep Learning with TensorFlow: Explore Neural Networks and Build Intelligent
Systems with Python. Packt Publishing Ltd, 2018.



Boletin Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones 85

Hacia un Método de Tractografia Basado en Informacién
Microestructural por Medio de Optimizacién Convexa

Ramoén Aranda™2, Gabriel A. Rocha!, Angel Diaz-Pacheco® y Miguel A. Alvarez-Carmona'?

!Centro de Investigacién en Mateméaticas, A.C., México.
2Secretarfa de Ciencia, Humanidades, Tecnologia e Innovacién (Secihti), México.
3Departamento de Ingenieria Electrénica, Campus Irapuato-Salamanca, Universidad de
Guanajuato, México.

Resumen

En este trabajo se presenta un método para estimar la estructura de la materia blanca (haces de axones)
integrando informacién microestructural mediante optimizacién convexa. El enfoque valida localmente cada
segmento utilizando un modelo fisico de difusién que asigna pesos a las posibles trayectorias, reduciendo
conexiones espurias desde etapas tempranas del proceso. El método se evalta frente a algoritmos clasicos
mediante métricas como LiFE, correlacién de conectividad y el drea bajo la curva ROC. Los resultados
muestran una mayor coherencia estructural y una reduccién de falsos positivos, con un desempefio
robusto ante el ruido. El estudio evidencia la viabilidad de incorporar informacién microestructural en
las estimaciones, aunque también revela una mayor cantidad de falsos negativos y una alta demanda
computacional.

Palabras clave: Tractografia; Optimizacion; Informacién microestructural; Haces de axones; Estructura cerebral.

1 Introduccién

La complejidad que presenta la estimacién de las conexiones neuronales en el cerebro humano ha impulsado
el desarrollo de diversas herramientas para su adquisicién y estudio. Entre ellas, la tractografia cerebral,
basada en imégenes por resonancia magnética de difusién (dAMRI), se ha convertido en un método clave para
estimar estas conexiones estructurales. Esta técnica permite estimar las trayectorias de las fibras axonales
que conectan distintas regiones cerebrales, proporcionando informacién importante sobre la organizacion
y la integridad del conectoma humano [18]. Sin embargo, a pesar de los avances en esta técnica, persisten
desafios importantes que limitan su precisién, como la alta incidencia de trayectorias erréneas (falsos positivos)
y la incapacidad de resolver de manera adecuada la complejidad estructural en zonas donde las fibras se
cruzan o bifurcan [5, 12, 17]. En este contexto, la presente investigacion propone abordar dichas limitaciones
mediante la implementacién de un enfoque de optimizacién convexa basado en microestructura, inspirado
en el algoritmo Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) [6].
Esta propuesta integra informacién microestructural detallada en el proceso de la estimacion de trayectorias
de haces axonales, reduciendo tanto los falsos positivos como las incertidumbres en areas de complejidad
anatOmica.

La relevancia de esta investigacion es significativa, ya que un avance en la precisién de la tractografia cerebral
no solo aportaria un mayor entendimiento sobre la conectividad estructural en individuos sanos, sino que

* .
arac@cimat.mx
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también abrirfa nuevas posibilidades en el estudio de enfermedades neurolégicas, donde el anélisis detallado de
las vias neuronales es crucial para la comprension de los mecanismos patolégicos [10]. Ademas, este desarrollo
podria impactar directamente en dreas como la planificacién quirirgica y la medicina personalizada, donde la
exactitud en la reconstruccién de los tractos neuronales es esencial para evitar errores clinicos [8, 15].

Este trabajo se enfoca en las limitaciones actuales de los métodos de tractografia para mejorar la reconstruccion
de las conexiones cerebrales integrando informacion microestructural mediante optimizacién convexa, ofreciendo
un marco mas robusto para futuras aplicaciones clinicas y de investigacién.

2 Trabajos relacionados

La tractografia es un enfoque que permite estimar las trayectorias de haces de axones mediante curvas
tridimensionales (3D), a partir de las orientaciones derivadas de las dMRI [7]. En general, la construccién de
una trayectoria comienza con la seleccién de un punto inicial, denominado semilla. A partir de este punto,
la trayectoria se propaga utilizando la informaciéon proporcionada por las dMRI, generando asi una curva
que representa el recorrido estimado de las fibras axonales. El movimiento de la trayectoria puede describirse
mediante la siguiente ecuacién de actualizacion:

Yer1 = Yp + Ady, (1)

donde y; representa la posicién tridimensional (3D) de la particula en el tiempo ¢, d; corresponde a la direccién
de propagacién y A es el tamaifio de paso. Asi, una trayectoria, s, estd formada por s = {y1,92,...,Ym}- En
términos generales, la principal diferencia entre los distintos métodos de tractografia radica en la manera en
que se estima la direccién d; en cada paso de la trayectoria [9, 13].

Una clase de métodos que han demostrado un gran desempernio son aquellos que logran integrar informaciéon de
vecindades para estimar d; [10]. Entre estos métodos se encuentran: la Tractografia basada en Comportamiento
Colectivo (TCC) [1], la Tractografia por Filtro de Particulas (TFP) [11] y la Tractografia por Transporte
Paralelo (TTP) [2].

TCC modela la propagacion de las trayectorias inspirandose en el comportamiento colectivo de bandadas
(flocking). Cada trayectoria sigue reglas locales de alineamiento, cohesién y separacion, lo que permite que
las trayectorias se ajusten mutuamente mientras avanzan. Esto genera un comportamiento colaborativo que
reduce rutas aisladas y guia a las fibras hacia patrones anatémicamente plausibles. El método incorpora
informacién de vecindades del conjunto de trayectorias, y no tinicamente del punto local de difusién. Como
resultado, produce tractogramas més coherentes y con menos falsos positivos.

TFP tiene como objetivo reducir la cantidad de trayectorias que terminan prematuramente dentro de la
materia blanca o en el liquido cefalorraquideo. La idea central de este método es realizar un retroceso en los
tiempos t — 7 en aquellas trayectorias que han experimentado una terminacién anticipada. De esta manera,
se aplica una correccién a la trayectoria estimada, permitiendo que alcance adecuadamente un punto de
terminacién valido.

Finalmente, TTP es un método que define un marco ortonormal a lo largo de cada trayectoria para evitar
rotaciones arbitrarias en la orientacién de las fibras. Utiliza el concepto geométrico de transporte paralelo
[4] para actualizar las direcciones locales de manera suave y consistente. Esto permite que la direccién de
propagaciéon se adapte fielmente a los cambios en la estructura de la materia blanca. A diferencia de los
métodos clasicos, evita giros abruptos y mantiene la coherencia direccional. Como resultado, se obtiene una
tractografia mas estable, precisa y menos afectada por artefactos de orientacién.

Al igual que los métodos previamente descritos, en este trabajo también proponemos la integracion de
vecindades de informacion; sin embargo, incorporamos informacién microestructural mediante el algoritmo
COMMIT [6] directamente durante el proceso de generacion de la tractografia. Esta integracion se realiza de
forma local, aplicando COMMIT a pequenas vecidades alrededor del punto y;. Con ello, no solo se optimiza la
seleccién de las trayectorias més plausibles, sino que ademaés se posibilita la recuperacién de falsos negativos,
mejorando la precisién de las conexiones anatomicas estimadas.
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3 Algoritmo propuesto

Nuestra contribucién principal radica en la integracion del algoritmo COMMIT [6] en el proceso de generacién
de tractografias, aplicaAndolo a pequefias vecindades durante la estimacion de las trayectorias, lo cual nos
permite calcular d;. A diferencia de las implementaciones tradicionales de COMMIT, que se aplican de
manera posterior a la generacién de las tractografias, nuestra propuesta explora su aplicacién en tiempo real,
reduciendo la dependencia de ajustes posteriores y preservando una mayor cantidad de informacién durante el
proceso de reconstruccion.

3.1 COMMIT

Para abordar la problematica de la presencia de falsos positivos en las reconstrucciones de las tractografias,
Daducci et al. (2015) [6] propusieron el algoritmo COMMIT, el cual utiliza un marco de optimizacién convexa
para refinar tractografias mediante la eliminacion de trayectorias inconsistentes con los datos de difusién. A
diferencia de otros métodos de posprocesamiento, COMMIT incorpora informacién microestructural del tejido
cerebral, ajustando la contribucién de cada fibra en la senal medida y filtrando aquellas que no se justifican a
partir del modelo fisico subyacente.

Dado un tractograma, el modelo matematico de COMMIT se basa en la siguiente ecuacién lineal:

y = Ax+1, (2)

donde y € RM representa la sefial de difusién medida en cada véxel, A € RM*N eg la matriz de diseno que

describe la contribucién de cada trayectoria a la sefial medida, x € R es el vector de pesos asociado a cada
trayectoria candidata y € RM corresponde al ruido de medicién.

El objetivo de COMMIT es encontrar el vector x que mejor explica la sefial y, imponiendo restricciones de no
negatividad y promoviendo la dispersién en x para eliminar trayectorias irrelevantes. Esto se logra mediante
la siguiente formulacién de optimizaciéon convexa:

min | Ax — y[3 + Alx]ls, (3)

donde el primer término minimiza el error de reconstruccién de la senal, mientras que el término de regulariza-
cién ||x||; promueve la seleccién de un subconjunto reducido de fibras, eliminando aquellas que no contribuyen
significativamente a la sefial observada. El pardmetro A controla el grado de regularizacién [6].

COMMIT incorpora modelos de microestructura basados en principios biolégicos, como el modelo Stick—Tensor
[20] (que representa axones como cilindros delgados con difusién restringida ) y el modelo de compartimentos
mixtos [6] (que considera la presencia de miiltiples tipos de tejidos, como fibras y espacio extracelular). Estos
modelos, codificados en la matriz A, permiten ajustar la contribucién de cada trayectoria de acuerdo con su
compatibilidad con la estructura neuronal, lo que ayuda a eliminar conexiones falsas [3].

Tras la resolucién del problema de optimizacién presentado en la ecuacién (3) (donde la matriz A es de una
escala muy grande), se obtiene un conjunto refinado de fibras, en el cual muchas de las trayectorias originales
han sido eliminadas debido a su baja contribucién a la sefial medida. El criterio de eliminacién se basa en
el valor de x obtenido para cada fibra. Si x; =~ 0, la trayectoria i se considera inconsistente con la senal de
difusion y es eliminada. De lo contrario, si x; > 0, la trayectoria i es retenida en la tractografia final. Este
proceso permite mejorar la especificidad de la tractografia y reducir significativamente la cantidad de falsos
positivos, dando lugar a estimaciones de conectividad més precisas [6, 19].

3.2 Tractografia basada en COMMIT

Dado un tractograma base, calculado con cualquier algoritmo de tractografia, con S = {s1,s2,...,8K}, en
cada paso del proceso de generacién de las estimaciones de los haces de axones se obtienen trayectorias
candidatas aplicando criterios de filtrado basados en un cono direccional (vecindad) alrededor de la trayectoria
central estimada. Sea §; el segmento de la trayectoria s; contenido dentro del cono. Formalmente, si ¢ denota
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la direccién del cono y ug, ; representa la direccién del segmento j de la trayectoria 3;, dicho segmento se
considera valido si todos sus subsegmentos satisfacen un umbral angular maximo 6y.;:

m]éx Z(U§i’j, c) < Bior- (4)
o equivalentemente en términos del producto escalar,

lug, ;- cf
—2L > ¢c08(ft01) (5)
(s, ;llfl<ll o

para todo segmento. Este criterio garantiza que las trayectorias en el cono no se alejen demasiado de la
direccién predominante en la vencindad del cono.

Para cada trayectoria §; en el cono, se calcula la direccién promedio de todos sus segmentos. Si la trayectoria
3; tiene IV, segmentos con vectores de direccion ug, ;, su direcciéon promedio se define como

dgv = u(gi,j. (6)

A continuacién se normaliza este vector promedio para obtener la direccién unitaria:

~ d;,
d;, = 5%

: (7)

De esta manera cada trayectoria valida queda representada por su direccién promedio unitaria dg,, lo cual
facilita la comparacion entre fibras.

La similitud direccional entre dos trayectorias se cuantifica mediante el coseno del angulo entre sus direcciones
promedio. Para dos vectores unitarios ds, y d;, la métrica de similitud direccional se define como su producto
escalar:

0i(8;,t) = |ds, - dy| = cos(£(ds,.dy)). (8)

Este valor se encuentra en el rango [0, 1] y mide cudn alineadas estén las direcciones de dos trayectorias. En
particular, la similitud de cada trayectoria s puede evaluarse respecto a la direccién predominante o frente a
otras fibras candidatas, penalizando aquellas que desvian significativamente su orientacién.

Finalmente, cada trayectoria candidata se puntiia con una funcién compuesta que pondera su peso dado por
COMMIT y su similitud direccional. Si x;, es el peso asignado por COMMIT al segmento de trayectoria §;,
se puede definir el peso normalizado como &3, = x, / >k Tk, donde xj, son los pesos de todos los segmentos
en el cono. Con un pardmetro A € [0, 1] que regula la importancia relativa, se define la puntuacién compuesta:

Kg, = (1—A)i‘gl + )\O’i(§i7t). (9)
De esta forma, si A = 0 se toma en cuenta solo el criterio COMMIT y si A = 1 solo la similitud direccional.
Finalmente, se selecciona la trayectoria §* con la mayor puntuacién compuesta:

§" = argmax kg, . (10)

Posteriormente, podemos usar §* para calcular d;41 usando ecuacién (7).

4 Experimentos y resultados

Con el objetivo de evaluar el desempefio del método propuesto de tractografia informada por microestructura
mediante optimizacién convexa, esta seccion detalla los experimentos y resultados.

Se emplean dos conjuntos de datos sintéticos ampliamente usados en la comunidad cientifica: el ISMRM
Tractography Challenge 2015 (actualizacién 2023) [16] y DiSCo (Diffusion-Simulated Connectivity) [10].
El primero se usara para analisis espaciales y estructurales. El segundo, para evaluacién cuantitativa de
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conectividad. Su uso complementario ofrece un marco sélido para validar el nuevo método de tractografia
propuesto.

En ambos casos se generaran tractografias con el algoritmo propuesto y con métodos tradicionales ampliamente
utilizados. Posteriormente se aplicaran métricas de evaluaciéon adecuadas al tipo de datos: para el primer
conjunto se emplea la técnica Linear Fascicle Evaluation (LiFE) [14] para estimar la contribucién predictiva
de cada trayectoria. Para el segundo se usan métricas de correlacion, exactitud y area bajo la curva ROC
(AUC), tal como lo establece el protocolo de evaluaciéon del DiSCo Challenge [10].

Para la validacién anatémica cualitativa y cuantitativa basada en trayectorias con el conjunto ISMRM, primero
se seleccionara una semilla en el cuerpo calloso, una regién con conectividad interhemisférica bien definida que
resulta ideal para evaluar la coherencia geométrica de las tractografias generadas. A partir de esta semilla se
obtendran tractografias mediante algoritmos deterministicos convencionales (como FACT, TEND, SD-Stream
0 iIFOD2) y mediante el algoritmo propuesto, que integra restricciones microestructurales mediante COMMIT
durante la generacion de las trayectorias. Cada tractografia se evaluara con el algoritmo LiFE, que estima la
contribucién predictiva de cada trayectoria sobre la senal AMRI original, permitiendo filtrar trayectorias no
justificadas y evaluar el ajuste global de cada modelo. Finalmente se comparara el rendimiento del algoritmo
propuesto con el de los métodos convencionales considerando su coherencia anatémica respecto de las fibras
de referencia, la puntuacién de prediccién bajo el modelo LiFE y el niimero de lineas filtradas por LiFE como
no justificadas.

La validacion cuantitativa de conectividad estructural entre regiones cerebrales utilizara el conjunto de datos
del DiSCo Challenge. En este caso se evaluard solo el desempeio del algoritmo propuesto para contrastar sus
resultados con los obtenidos por otros métodos participantes del challenge original. Se usard el subconjunto
de alta resolucién del DiSCol, en sus versiones con ruido Rician a niveles de Relacién sefial-ruido (SNR
por sus siglas en inglés) de 10, 20, 30 y 50. A partir de las tractografias generadas, se estimardn matrices
de conectividad ponderadas entre las 16 regiones de interés (ROIs) definidas en el conjunto de datos. Las
conexiones se cuantificaran segin el nimero de trayectorias entre cada par de ROIs y, cuando corresponda,
segtn el peso estimado en funcién de la microestructura. La calidad de estas matrices se evaluara mediante las
métricas del DiSCo Challenge: correlacién de Pearson con la matriz de referencia (peso continuo), drea bajo la
curva ROC (comparando con la matriz binaria de referencia) y exactitud de clasificacién (pares correctamente
identificados como conectados o no conectados). Finalmente, se analizard el comportamiento del algoritmo
frente a diferentes niveles de ruido para evaluar su robustez y sensibilidad a condiciones adversas.

4.1 Resultados

La Figura 1 muestra una comparacién visual de tres tractografias generadas a partir de una misma semilla
localizada en el cuerpo calloso, utilizando diferentes algoritmos. Todas las tractografias fueron generadas con
la misma cantidad de trayectorias, lo que permite una observacién cualitativa mas equitativa entre métodos.

A partir de esta visualizacion inicial pueden identificarse algunas diferencias notables entre las tres reconstruc-
ciones. El algoritmo iFOD2 (Figura 1a) presenta una mayor dispersion de trayectorias hacia regiones laterales,
algo que puede relacionarse con su naturaleza probabilistica, propensa a explorar recorridos menos restringidos.
SD-Stream (Figura 1b) exhibe una estructura mas centralizada y simétrica en la region del cuerpo calloso; las
trayectorias aparecen mas alineadas, aunque ello podria limitar la cobertura en zonas periféricas. El algoritmo
propuesto (Figura lc) parece mantener un equilibrio entre coherencia espacial y extensién: las trayectorias
se distribuyen dentro de un rango anatémicamente plausible y sin una dispersién excesiva. Estos resultados
corresponden Uinicamente a una inspeccién visual preliminar.

Aunque el comportamiento del algoritmo propuesto resulta alentador, es necesario complementar este andlisis
con métricas cuantitativas en las siguientes secciones para validar su desempefio de forma objetiva. Para
complementar el analisis visual anterior se aplicd el modelo LiFE a cada una de las tractografias generadas.
Esta herramienta filtra las fibras que no contribuyen de manera significativa a explicar la sefial de difusion vy,
de este modo, ofrece un estimador indirecto de la fidelidad anatémica de las trayectorias reconstruidas.

La Tabla 1 muestra los resultados obtenidos al aplicar LiFE. Aunque todos los métodos partieron del mismo
nimero total de fibras (780), se observa una diferencia en la cantidad de trayectorias que LiFE considera
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Figura 1: Comparacién visual de tractografias generadas desde una semilla en el cuerpo calloso: a) iFOD2, b)
SD-Stream, c¢) Algoritmo propuesto.

Tabla 1: Namero de fibras retenidas por LiFE en cada tractograffa (semilla en el cuerpo calloso).

Método # Fibras Fibras retenidas

iFOD2 780 597
SD-Stream 780 571
Propuesto 780 642

significativas. En particular, la tractografia generada con el algoritmo propuesto retuvo una mayor proporciéon
de fibras, lo cual podria indicar una mejor coherencia con los datos de difusion.

Adicionalmente, se calcularon métricas cuantitativas para evaluar la similitud entre las matrices de conectividad
estimadas y la matriz de referencia proporcionada por el DiSCo Challenge. Las métricas consideradas incluyen
la correlacién de Pearson (r), el AUC y la exactitud, esta tltima evaluada considerando un umbral de
conectividad del 5 %.

Los resultados en la Tabla 2 muestran una correlacién positiva significativa en todos los niveles de ruido, con
valores de r superiores a 0.83, lo cual indica una correspondencia estructural consistente entre las matrices
estimadas y la matriz de referencia. Asimismo, los valores de AUC cercanos a 0.95 en todos los casos sugieren
una buena capacidad del algoritmo para discriminar entre conexiones presentes y ausentes. En cuanto a la
exactitud, los valores absolutos son moderados.

Un aspecto central en la evaluacién del algoritmo propuesto es determinar su comportamiento frente a distintas
condiciones de ruido y la sensibilidad respecto a los pardmetros de construccién de fibras, en particular el
tamano del cono (cone_size) y el angulo de apertura (6;). La Tabla 3 resume los valores de las métricas de
desempenio en funcién de dichos pardmetros, considerando diferentes niveles de SNR. Los resultados muestran
que, de manera general, tanto la correlacion r como el AUC presentan valores mas altos para configuraciones
intermedias de parametros, mientras que valores extremos tienden a deteriorar el rendimiento.

5 Conclusiones

El presente trabajo se centro en el desarrollo y la evaluacién preliminar de un algoritmo de tractografia cerebral
que integra el marco de optimizacion convexa COMMIT de manera temprana en la construcciéon de fibras. El
objetivo principal fue explorar si esta estrategia permite reducir falsos positivos y recuperar falsos negativos
desde la fase inicial de la generacién de trayectorias, en lugar de aplicar la validaciéon inicamente como un paso
posterior. Los resultados presentados demuestran el potencial del enfoque planteado. Si bien el desempefio
aun no alcanza niveles competitivos, especialmente en términos de exactitud, las mejoras observadas en
correlacién y AUC respaldan la hipétesis de que la validacién temprana con COMMIT puede convertirse en
una herramienta prometedora para incrementar la precisién de las tractografias.
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Tabla 2: Métricas de evaluacién cuantitativa por nivel de SNR.

SNR Correlacién de Pearson (r) AUC Exactitud (umbral 5 %)

10 0.8460 0.9505 0.2833
20 0.8325 0.9406 0.2917
30 0.8715 0.9499 0.2833
50 0.8819 0.9543 0.3160

Tabla 3: Sensibilidad del algoritmo propuesto segin pardmetros de construccién (cone_size y 0:01) en diferentes
niveles de SNR. Se muestran los valores de correlacién r, AUC y exactitud.

cone size =5 cone_size =7 cone_size = 10
Métrica SNR 90° 120° 150° 170° 90° 120° 150° 170° 90° 120° 150° 170°
r 10 0.854 0.853 0.840 0.847 0.865 0.834 0.817 0.808 0.834 0.827 0.759 0.777
T 20 0.844 0.834 0.820 0.811 0.850 0.816 0.790 0.798 0.833 0.806 0.758 0.762
r 30 0.885 0.881 0.867 0.868 0.866 0.881 0.858 0.847 0.870 0.872 0.862 0.853
r 50 0.901 0.893 0.887 0.888 0.893 0.900 0.902 0.892 0.887 0.894 0.886 0.880
AUC 10 0.959 0.951 0.948 0.947 0.968 0.967 0.944 0.929 0.952 0.944 0.905 0.912
AUC 20 0.964 0.975 0.978 0.970 0.977 0972 0972 0.976 0.959 0.950 0.961 0.952
AUC 30 0.946 0.947 0.936 0.938 0.946 0.948 0.941 0.936 0.946 0.939 0.946 0.935
AUC 50 0.968 0.967 0.965 0.966 0.967 0.967 0976 0.974 0.969 0.971 0.979 0.972

exactitud 10 0.333 0.342 0.350 0.333 0.350 0.383 0.383 0.392 0.383 0.417 0.442 0.467
exactitud 20 0.358 0.383 0.375 0.375 0.358 0.408 0.383 0.400 0.408 0.442 0.450 0.483
exactitud 30 0.325 0.342 0.342 0.342 0.325 0.350 0.417 0.408 0.400 0.408 0.442 0.492
exactitud 50 0.383 0.383 0.400 0.400 0.417 0417 0.417 0433 0.375 0.425 0.475 0.492

El método propuesto presenta como principal limitacién su dependencia de una tractografia inicial, lo cual
puede afectar directamente el desempefio global. No obstante, los hallazgos obtenidos sientan las bases para
futuras lineas de investigacion orientadas a refinar el método, optimizar su implementacién y ampliar su
validacién en escenarios més cercanos a la practica clinica.
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. Quieres publicar articulos, informacién sobre
eventos o noticias en el boletin?

La Sociedad Mexicana de Computacion Cientifica y sus Aplicaciones A. C. (SMCCA), convoca a toda
la comunidad interesada en el area de la Computacion Cientifica y sus Aplicaciones, a presentar noticias,
informacion sobre eventos, articulos de divulgacion e investigacion de alta calidad en el era, asi como reportes
de trabajos de tesis de nivel licenciatura y posgrado en Mateméticas Aplicadas.

Requisitos para la colaboracién en el Boletin
I Articulos de Divulgacion e Investigacion.
a) Los articulos que se envien para ser publicados deberéan ser inéditos y no haber sido ni ser sometidos
simultaneamente a la consideracién en otras publicaciones.

b) Todos los articulos son sometidos a una revision por expertos en estas areas de instituciones nacionales
e internacionales.

¢) Los articulos a presentarse deben de ser enviados por medio de la pagina del Boletin:
https://www.scipedia.com/sj/smcca

d) En la pagina de la sociedad se puede encontrar la plantilla de LaTeX para la correcta escritura de
articulos.
IT Informacion sobre eventos.
a) Los eventos cuya informacion quiera ser publicada para promocionarlos, deberén estar relacionados
con el area de las Matematicas Aplicadas y la Computacion Cientifica.
b) La informacion debe enviarse en un archivo de imagen: PDF, JPG, PNG.
¢) La informacion no debera exceder una cuartilla.

d) Enviar la informacion con al menos 6 meses de anticipacion a la fecha en que se llevaria a cabo.
IIT Noticias.
a) Las noticias a ser publicadas en el Boletin deben ser noticias relevantes de actividades de la SMCCA,
Socios, Comunidad Cientifica interesada en las Mateméaticas y Computacion Cientifica.
b) La informacion de las noticias debe enviarse en un archivo de imagen: PDF, JPG, PNG.
¢) La informacion no debera exceder una cuartilla.

El material de colaboracién, noticias e informacién de eventos, deberan ser dirigidos al Dr. Gerardo Ti-
noco Guerrero al correo electronico de la SMCCA: smcca@smcca. org.mx.

Todos los articulos son sometidos a evaluacion por especialistas de instituciones nacionales e internaciona-
les y su publicacion estara sujeta a la disponibilidad de espacio en cada ntimero. Las demés colaboraciones se
someteran a correccion de estilo y su publicacién estaré sujeta a la disponibilidad de espacio en cada ntimero.
Solo se aceptara el material enviado que cumpla con todos los requisitos anteriormente senalados.

El envio de cualquier colaboraciéon al Boletin implica no solo la aceptacion de lo establecido en este do-
cumento, sino también la autorizacion al Comité Editorial del Boletin SMCCA para incluirlo en su péagina
electronica, reimpresiones, colecciones y cualquier otro medio que permita lograr una mayor y mejor difusiéon.
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